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CHAPTER 1. INTRODUCTION 

In 1934, A. L. Patterson devised a function, now known 

as the Patterson function, which consists of all of the 

Interatomic vectors in the unit cell and can be obtained by 

Fourier transforming the observed intensities of the Bragg 

reflections. Until the early 1950s, almost all crystal 

structures were solved via analysis of this function. The 

positions of atoms in a structure were usually obtained by 

examination of two-dimensional projections of the Patterson 

function for characteristic interatomic vectors. 

A new era dawned in 1952 with the development of a 

series of equations which showed that, theoretically, 

complete crystal structures could be obtained from the 

direct manipulation of the Bragg reflections. Such 

procedures became known as "direct methods". Much of the 

initial popularity of direct methods procedures was due to 

their ability to solve the nearly-equal atom structures, 

which are difficult to solve using Patterson methods. 

Today, the direct methods approach is quite often used in 

the first attempt at solving a crystal structure. While for 

many structures, direct methods will furnish at least a 

partial solution, there are still many structures that 

resist solution by the direct methods approach. 

It is these structures that have encouraged a 

renaissance in the development of Patterson method 
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techniques by several research groups, notably including 

this one. Many of the groups have focused their efforts on 

the development of procedures that make use of known 

molecular fragments. However, this group has focused its 

efforts primarily on the development of ̂  initio methods, 

where no prior knowledge of the structure is required. 

Previously, indirect use of the space group symmetry was 

made by using Barker vectors and planes in these methods. A 

new procedure which directly makes use of the space group 

symmetry has been developed and automated in a series of 

computer programs called HYPAD. 

In any structure determination, the primary goal is the 

determination of the positional and thermal parameters of 

the atoms present in the structure. These parameters affect 

the amplitude and phase of the scattered wave. The 

amplitude of the scattered wave is proportional to the 

observed intensity of the scattered wave, but the phase is 

not measurable experimentally. The need to determine the 

phases of the scattered waves is often referred to as the 

"phase problem" in X-ray crystallography. A brief 

description of the phase problem is given in Chapter 2, 

along with discussions of the approaches used in solving the 

phase problem; direct methods, Patterson, and Patterson 

superposition techniques. 

Chapter 3 is devoted to the theory of the use of space 

group symmetry in Patterson superposition maps as utilized 
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in HYPAD. Reciprocal space approaches for the location of 

symmetry elements and the location of, and correction for, 

multiple images in superposition maps are developed. A 

brief description of the programs available in HYPAD is 

given in Chapter 4. The programs in HYPAD have been tested 

using several real structures, some of which were known 

previously and some which were unknown at the time. These 

structures are discussed in Chapter 5. Chapter 6 contains 

a summary of the viability of the HYPAD approach, and a 

discussion of possible modifications to HYPAD is given in 

Chapter 7. 

Appendix A contains a listing of the keywords used in 

the various input files for HYPAD. A discussion of crystal 

structures completed using methods other than HYPAD are also 

listed in Appendix B. 
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CHAPTER 2. THE PHASE PROBLEM AND ITS SOLUTION 

In every X-ray diffraction structure determination, the 

objective is the determination of the absolute phase shifts 

undergone by X-rays when they are scattered by a crystalline 

solid. This is what is known in crystallography as "the 

phase problem". 

A Physical Description of the Problem 

In a single crystal X-ray experiment, the incident X-ray 

beam interacts with the crystal resulting in a diffracted 

(or reflected) beam. Being an electromagnetic plane wave, 

the incident beam can be represented mathematically by 

V(r) = ^0 exp(2niSoT/X) , (2.1) 

where \f»o is the amplitude of the wave and Sq is a unit 

vector in the direction of the propagation of the incident 

beam. For X-radiation, the wavelength, X, is on the order 

of 1Â, which is comparable to the spacing between atoms in a 

crystalline material. Therefore, a crystal will act as a 

diffraction grating when it is placed in a beam of X-rays. 

Because X-rays are scattered most effectively by the 

electrons in the crystal, those crystals having larger 

concentrations of electrons will scatter the best. Each 

electron will scatter X-rays in every direction, and thus. 
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the jelectron will produce a distribution of scattered 

waves, 

*j(r) = /j exp( 2jiis'r/X) , (2.2) 

where s is a unit vector in the direction of the scattered 

wave. In general, the direction of s is different from that 

of Bq. The scattering amplitude for a single electron, /j, 

falls off as the scattering angle increases. 

In a diffraction experiment, the intensities of the 

scattered waves are measured. Each scattered wave is the 

composite of the scattered waves from all of the individual 

electrons in the crystal, and is formed by the superposition 

of these waves. The individual waves can either reinforce 

each other or interfere with each other, if two parallel 

in-phase incident waves, having a wavelength of X, are 

scattered by parallel planes in the crystal, separated by an 

interplane distance d, then they will scatter in-phase only 

for specific scattering angles 0. Mathematically, this is 

given by Bragg's Law^, 

X = 2dsin0 . (2.3) 

Similar phase relationships can be obtained when 

scattering from a distribution of electrons is considered. 

Suppose there are two scattering centers, and C2, as 

shown in Figure 2.1. These scattering centers can be either 

individual electrons or small localized distributions of 

electrons (e.g., atoms). For a center Cj, the path 
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*2 

Figure 2.1. Schematic diagram for scattering from two 

points Ci and C2 
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difference between a wave scattered by the center and a wave 

scattered by an arbitrary origin 0 is given by 

Aj = aj - ajo = IrjI (singj - sinaj) . (2.4) 

This gives a phase difference of 

2nAj " 2ii(s - So)Tj/X = 2ithTj (2.5) 

where h is usually referred to as the diffraction vector. 

The composite of the scattered waves is given by the 

structure factor, Fjj, and is the sum of the individual 

scattering distributions 

Ne Ne 
Fh = Z ^k(h) = 2 fj exp( 2nih* rj^ ) 

k k 

Na 
= L f ̂ exp( 2iiih') , (2.6) 

j ^ ^ 

where Ne is the number of electrons in the unit cell, Ng is 

the number of atoms in the unit cell and fj is the atomic 

scattering factor. The magnitude of Fjj, | Fj^| , is related to 

the extent to which the atoms in the crystal scatter in-

phase for a particular reflection (i.e., the relative phase 

differences of the diffracted waves), and is independent of 

the absolute phase of the reflection. 

The electron density of a structure, p(r), can b'e 

written as the Fourier transform of the structure factors 

p(r) = / Fji exp(-2iiihT) dh , (2.7) 

where the integral is over the entire space of wave vectors 

h, and IF^I^ is proportional to the observed intensity, 1%. 

Since, in general, the structure factors are complex 
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numbers, they can be expressed in terms of a phase and a 

magnitude 

Fh = |Fhl exp(2iii<J>h) 

= Ah + iBh . (2.8) 

Since, in practice, the integral in equation (2.7) is 

evaluated as a summation over a finite number of discrete 

points having integer values of h = (h,k,l), the electron 

density can be rewritten as 

1 
p(r) = - Z |Fhl exp(i*h-2nih'r) . (2.9) 

V h 

Thus, if both the phase and the magnitude of all of the 

structure factors are known, then complete information about 

the structure can be obtained. However, the phases of the 

structure factors, unlike the magnitudes, can not be 

obtained directly from a diffraction experiment. This loss 

of phase information is referred to as the "phase problem" 

in crystallography. 

For a structure having a reasonable amount of 

complexity, there are essentially two basic methods to use 

to solve the phase problem; a real space method and a 

reciprocal space method. The remainder of this chapter is 

devoted to a brief discussion of the background and 

application of these methods. 
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Direct Methods 

The term "direct methods" is usually taken to mean those 

methods which attempt to derive the phases of the structure 

factors using only the intensity information. The birth of 

direct methods can be traced back to the late 1940s with the 

development of the Harker-Kasper inequalities^ and the 

Karle-Hauptman determinantal inequalities^, which are based 

on the fact that the electron density is positive 

everywhere. While some very simple centrosymmetric 

structures could be solved using these inequalities, they 

made very little impact in the practical solution of crystal 

structures. 

In addition to the condition of non-negativity of the 

electron density, the concept of atomicity (i.e., the 

electron density can be resolved into separate regions 

representing atoms) can be imposed. This led to the 

derivation in 1952 of what is now known as the Z2 relation 

by Sayre^, and independently by Cochran^ and Zachariasen^. 

If the electron density function of a structure which 

consists of equal resolved atoms is squared, then the result 

looks similar to the original electron density function. 

The peaks in the squared function will be sharper and 

higher, but they will be in the same positions as in the 

original function. In terms of reciprocal space quantities, 

the S2 relation is given by. 
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Eji = K < Bh_k Ejç >jj f (2.10) 

where represents the average over a complete set of 

vectors k, and the Eh are the normalized structure factors. 

The vectors h, k, and h-k form a closed triangle, or vector 

triplet, in reciprocal space. 

Much of the early application of direct methods centered 

around the solution of centrosymmetric crystals. For 

centrosymmetric crystals, equation (2.10) becomes 

s(h) = s[ E s(k) s(h-k) ] , 
k 

(2.11) 

where = means "probably equals", s(h) is the sign of and 

the terms on the right-hand side of equation (2.11) are 

pairs of known signs which give an indication for s(h). The 

probability that s(h) is positive, given many contributor 

pairs was first derived by Cochran and Woolfson' and is 

given by 

0-, 
P^(h) = Y "I" Y tanh ~3 5 ^k ^h-k 

^2 k 

where 0^ is 

Tn = Z ( Z j )" 

( 2 . 1 2 )  

(2.13) 

and Zj is the atomic number of the atom. 

It was not until a few years later that a probability 

distribution for the general phase relationship 

*h = *k + *h-k (2.14) 

was developed by Cochran® 
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P'+h' - 2iiI„tK,, ,^1 :xP'Kh,kC°s<+h - •k - •h-k" ' '2-15» 

where 

a 

Kh.k - -372 |Gh Sk Eh-kl 12'IG' 
°2 

and Io(Kh,k) is a modified Bessel function, 

2n 
In(x) = E n . (2.17) 
" n=l 2"=" ((2n)l)^ 

The probability expressions quantify what would otherwise be 

a qualitative manipulation of the phases. 

In 1956, Karle and Hauptman^ introduced an equation 

which provides an estimate for *(h) when several pairs of 

known phases are available. This was given in the form of 

the tangent formula which is 

I Kh,k sin(*k + *h-k) 
k 

tan i|»h = . (2.18) 
I Kh,k cos(*k + *h-k) 
k 

These developments gave crystallographers the tools to 

solve some of the structures that had previously been 

difficult to solve, such as structures containing atoms of 

equal or nearly equal atomic number, and led to the 

development of several structural solution strategies. One 

of the earliest such strategies was Symbolic Addition, 

developed by Karle and KarlelO. In Symbolic Addition, 

algebraic symbols are assigned to the phases of a group of 

reflections, known as the starting set. The starting set is 
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chosen by taking those structure factors that have large 

lEjjl and that can be combined with other members of the 

starting set to give phase estimates of many other 

reflections. Once a consistent set of symbolic phases has 

been obtained, the values of the phases can be calculated. 

Probably the most widely used direct methods approach is 

MULTAN, developed by Germain, Main and Woolfson^^. This 

approach is similar to that of Symbolic Addition, except 

that numerical values for the phases are substituted for 

symbols at the outset. These numeric phases are then 

refined using equation (2.10) and new estimates of the 

phases are calculated using equation (2.18). 

Since the introduction of MULTAN, there have been many 

advances in the direct methods strategy. With the addition 

of various concepts, such as magic integers^^, the 

neighborhood principle^^, quartets^^"^^, random starting 

phases^®, and the maximum-entropy method^®"^^ to name a few, 

many fairly complex compounds can be solved using direct ' 

methods. However, there still remain numerous compounds 

that resist solution via direct methods. This has prompted 

a renewal of interest in real space, or Patterson methods. 

Patterson Methods 

Although the connection between Fourier theory and X-ray 

diffraction had been well known since 1913, when it was 
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first noted at a Solvay Conference, it was was not widely 

used until 1934, when A. L. Patterson introduced a Fourier 

series expression, now known as the Patterson function^^, 

which could be calculated directly from the observed 

intensities 

P(u) = J p(r) p(r + u) dr 

= E |F JI|2 exp(2itih"u) . (2.19) 
h 

The square of the magnitude of the structure factors can be 

written as 

|Fh|2 = Fh F_h 

N N 
= E Z fj fk exp( 2iiih" ( r j - r^)) . (2.20) 

j k 

Thus, peaks in the Patterson function occur when two atoms 

are separated by the vector u. Furthermore, the magnitude 

of a peak is proportional to a contribution of ZjZ^ for 

atoms j and k such that ly - r^ = u. The concept that the 

Patterson function represents all of the interatomic vectors 

in the unit cell is important to the understanding and 

interpretation of the function. 

In a vector set notation where {a^ - a^}, i=l,N, 

represents the set of interatomic vectors between atom 1 and 

all the atoms in the unit cell (i.e., one image of the 

structure), the Patterson function is given as 

[P(u)] s {a^ - a^} U {a^ - 32} U ... U {aj^ - a^} 

s {a^ - aj}, i,j=l,N . (2.21) 
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Thus, for a structure containing N atoms, the Patterson 

function contains N images of the structure, superimposed 

upon one another. This can make interpretation of the 

Patterson function difficult, even for simple structures. 

To illustrate, consider the hypothetical structure shown 

in Figure 2.2, ("Elephantine"^^). This structure contains 4 

heavier atoms, such as iron, per molecule and a long chain 

of carbons. In the Patterson map generated by this 

molecule, the dominant images are the iron images (i.e., 

those images formed by vectors having iron atoms at the tail 

of the vector). The Patterson map shown in Figure 2.3 is 

composed of only the iron images and thus contains 16 images 

of the structure. One can see that even for this relatively 

simple structure, the Patterson map is very complex. 

In 1936, the concept of symmetry was introduced into 

Patterson analysis by D. Marker by the use of Marker 

vectors24. Barker vectors are interatomic vectors between 

symmetry-related atoms. The Marker vectors for a given 

space group have the same general form, regardless of the 

actual position of the atoms in question. Table 2.1 lists 

the Marker vectors for the space group P2i/c. For 

structures containing only a few heavier atoms, which 

produce the more prominent peaks in the Patterson map, the 

Marker vectors and Marker planes can be used to infer 

positional information of some of the atoms. 
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Figure 2.2. Unit cell diagram for "Elephantine" (space group pmm) 
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Figure 2.3. Patterson map for "Elephantine" 

iron images 

Contains 16 complete 
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Table 2.1. Barker vectors for the space group P2i/c 

x,y,z -x,y+l/2,l/2-z X,1/2-y,1/2+z -x,-y,-z 

x,y,z 0 2x,l/2,l/2+2z 0,l/2+2y,l/2 2x,2y,2z 

-x,y+l/2,l/2-z -2x,l/2,l/2-2z 0 -2x,2y,-2z 0,l/2+2y,l/2 

X,1/2-y,1/2+z 0,l/2-2y,l/2 2x,-2y,2z 0 2x,l/2,l/2+2z 

-x,-y,-z -2x,-2y,-2z 0,l/2-2y,l/2 -2x,l/2,l/2-2z 0 
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However, an ever-present problem in Marker analysis is 

that the 2i-screw vector, for example, of one atom may 

accidentally combine with the glide vector of an unrelated 

atom to give the position of a peak which is actually 

present in the Patterson map but is not the inversion vector 

for either atom. A method, referred to as Vector 

Vérification^^, has been developed to help combat this 

problem. In Vector Verification, the interatomic vectors 

based on the atomic positions obtained from the Barker 

analysis are calculated and then verified by checking to see 

if they are in the Patterson map. 

Quite often, if the structure contains a small number of 

heavy atoms, the positions of these atoms can be used to 

estimate the phases of the Fjj. Calculation of an electron 

density map using these phases will then provide possible 

positions for the rest of the structure. Of course, the 

assumption inherent in this approach is that the phases from 

the partial structure are close to the phases' obtained from 

the entire structure. Obviously, this is not always the 

case. 

In 1950, it was discovered by Clastre and Gay^^ and 

Garrido27 that the superposition of a shifted Patterson map 

onto an unshifted map resulted in the superposition of a 

relatively small number of vectors. This set of vectors is 

referred to as the "reduced vector set". This superposition 

of Patterson maps results in the partial deconvolution of 
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the Patterson function. Much of the early systematic 

analysis of the superposition was done by Buerger^S, who 

showed that application of this procedure could lead to the 

deconvolution of the Patterson map into one image. 

This can be best illustrated in terms of the vector set 

notation introduced earlier. The superposition can be 

thought of as the intersection of the set of unshifted 

vectors and the set of shifted vectors. If the shift vector 

s is a single (i.e., unique) interatomic vector, such that s 

= (32 - ai), then the superposition can be written as 

[M(r)] E [{aj - aj} + (a2 - ai)] n [{a^ - aj}] 

H [{a^ - a^} + {32 - aj}] n [{aj - 3j)] 

= {3j[ — 3^} U {32 - 3 j } , i;j=l»N . (2.22) 

Thus, two images remain after the superposition. One is an 

image as "viewed" from the atom at 3% and the other is the 

inverse of the image as "viewed" from the atom at 32. These 

two images are related by an inversion center at (32 -

ai)/2. Figure 2.4 shows the result of a superposition using 

a single vector for "Elephantine". If a second vector, = 

33 - 3i, is chosen to use in an additional superposition, 

then the result is 

[M(r)] s [{ai - aj} + (32 - a^)] n [{a^ - aj) + (33 

- a^ ) ] n [ {3^ - 3 j } ] 

5 [{ai - 31)] , i,j=l,N . (2.23) 

Thus, theoretically, one image of the structure can be 

obtained after two superpositions using single vectors. 
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to 
o 

Figure 2.4 Superposition map for "Elephantine", 

complete iron images 

Contains 2 
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Unfortunately, since multiple vectors are easier to find 

in a Patterson map, they are more likely to be used in the 

superposition. This can cause difficulties because the 

superposition map will then contain multiple images. If the 

shift vector is a multiple vector, s = (32 - a^) = (04 -

33), then the superposition is 

[M(r)] • {ai - ai) U {a2 - aj) U {aj^ - 33} U {84 

- aj} , i,j-l,N (2.24) 

Two of the images are correctly oriented (from a^ and 33) 

and two of the images are inverse images (from 82 and 84). 

There are a number of ways to do a Patterson 

superposition. The preferred way is do a "minimum" 

convolution of the Patterson function and the shifted 

Patterson function,' 

M(r) - min (P(r), P(r + s)) . (2.25) 

In practice, this is calculated by taking the point-wise 

minimum of P(r) and P(r + s) at all points r in the unit 

cell. 

If the shift vector chosen for the superposition is an 

interatomic vector connecting atoms of different atomic 

number, then the vectors in the reduced vector set will have 

incorrect peak heights. If the shifted Patterson is 

weighted by the ratio of the atomic numbers of the atoms at 

the head and tail of the shift vector, then the reduced 

vector set will have correct weights^B. For example, if the 
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shift vector is given by s - (a2 - ai) and x - Z1/Z2, then 

the weighted superposition function is given by 

M(r) - min (P(r), TP(r + s)) . (2.26) 

If we refer to equation (2.22), a weighted superposition 

will produce heights for the vectors in the reduced vector 

set corresponding to the smaller of and TZiZ2, and ZgZj 

and TZ^Zj, respectively. As an example, in order for the 

vector (34 - ai) to be appear in the superposition map, the 

vector (a4 - «2) niust be shifted by (82 - a^) in order to 

superimpose upon the vector (a^ - ai) in the original map. 

In an unweighted superposition, the height of this vector 

would be the minimum of Z4Z2 and Z4Z1, or Z4Z2, which is the 

incorrect height for this vector. In a weighted 

superposition, the height would be the minimum of 

(Zi/Z2)*(Z4Z2) - Z1Z4 and Z1Z4, or Z1Z4. Weighting the 

superposition has the effect of suppressing one image 

relative to the other image. Thus, weighted superpositions 

are done whenever the atomic numbers of the atoms of the 

shift vector can be estimated and the weighting factor would 

be different from unity. 

The study of macromolecules such as proteins and viruses 

in the 1950s led to the discovery that identical, but not 

crystallographically symmetry-related, units can often be 

found throughout the structure. This discovery prompted the 

development of a technique now known as Molecular 

Replacement^®, where the locations and orientations of these 
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units in electron density space could be calculated by 

locating the positions and orientations of the 

characteristic Patterson space patterns. This method gave 

rise to the development of translational and rotational 

functions^l which measure the overlap of the Patterson 

function and a copy of the Patterson which has been 

transformed about a non-crystallographic symmetry element. 

A method which is applicable when partial molecular 

geometry information is available was developed by 

Nordman32. In this approach, all of the interatomic vectors 

in the molecular fragment are calculated. This pattern of 

vectors is then rotated and translated in order to provide 

the best match with a portion of the Patterson map. 

In the past decade, there has been a resurgence of 

interest in Patterson and Patterson superposition methods. 

Many computer programs, such as ALCAMPS^^, SHELXS^^, XFPS^^, 

IMPAS^S, and HASSp36 have appeared. However, for most 

crystallographers, Patterson techniques still remain the 

last alternative, something to be tried only when direct 

methods techniques have failed completely, because the 

manipulations tend to be somewhat cumbersome. 

The EG Relationship 

One of the advantages of Patterson techniques is that 

they are easy to start. For a superposition, one simply 
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needs to choose a vector in the map. However successive 

application of superpositions entails a large amount of risk 

since all vectors used in the superposition must come from 

the same image. On the other hand, with a good starting set 

of phases, direct methods techniques will often result in a 

solution. However, with a bad set of starting phases, 

direct methods fail to provide a solution. Quite often, it 

can be difficult to find a good starting set of phases. 

It would be advantageous if a method could be found 

whereby the easy start of the Patterson methods and the 

stability of the direct methods - given a good start - are 

combined. Such an approach has been examined by this group 

previously^?. Using the assumption that the product of the 

Patterson superposition function and the electron density 

function looks like the square of the electron density 

function, then the following relation, called the EG 

relationship, is obtained 

Eh = K < Ek Gjj-k >k ' (2.27) 

where the Gjj-k are the Fourier transform coefficients of the 

Patterson superposition map. Unlike the Ejj, both the phase 

and the magnitude of the are known, thus enabling a large 

number of terms to be included in equation (2.27) at the 

outset of a phase refinement. 
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CHAPTER 3. SYMMETRY ELEMENT LOCATION 

In the past, procédures that have attempted to find 

symmetry elements in superposition maps have been real space 

methods. Typically, the major focus of attention has been 

an examination of the characteristic Barker vectors in an 

attempt to locate the symmetry elements. What .will be 

presented here is a reciprocal space approach. 

The Superposition Map as a Pseudo-electron Density Map 

There exist relationships between the normalized 

structure factors, Ejj, which arise from the symmetry 

elements present in the unit cell. However, the Fourier 

transform coefficients of the superposition map, Gjj, only 

have Pi symmetry, in general. Since the structure under 

study usually has higher symmetry than Pi, it is desirable 

to transform the Gjj into some G^, where the G^ have symmetry 

relationships that arise from the symmetry elements present. 

If we examine the ideal case where the structure 

consists of point atoms and a unique (i.e., single) vector 

is chosen as the superposition vector, the resulting 

superposition map would contain two images of the structure 

and no extraneous peaks. If we further add the condition 

that the superposition be weighted, then the superposition 
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map will contain predominantly one image of the structure, 

with the inverse image substantially reduced by comparison. 

Since the origin of the superposition map lies on an 

atom, and, in general, the origin of the electron density 

map is defined relative to the symmetry elements, the 

superposition map can be considered not only to be a first 

approximation to an electron density map, but one with the 

origin in the wrong position. The coefficients Gjj would 

then be related to the Fjj by 

Gh = K Fh exp(-2itih'toj-g) , (3.1) 

where torg is the vector from the location (in the 

superposition map) of the electron density map origin to the 

origin of the superposition map, and K is a scale factor. 

Equation (3.1) can be rewritten as 

Fh = K Gh exp(2nih'torg) 

= K , (3.2) 

which produces the structure factor-like quantities, 

These new coefficients should have the desired symmetry 

relationships. 

Therefore, once the location of the electron density map 

origin in the superposition map has been determined, the 

can be transformed using equation (3.2). The phases of the 

transformed coefficients can be used as a first 

approximation to the phases of the and these phases can 
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in turn be further refined by use of the Eg relation or the 

EG relation. 

The Location of Symmetry Elements in Superposition Maps 

Previous attempts at locating the position of symmetry 

elements have focused their efforts on examining the 

characteristic Marker vectors for solutions which occur 

frequently. One of the difficulties with this type of 

analysis is that the peak positions from the superposition 

map are approximate. This means that only rarely will exact 

matches be found; the user must decide on a tolerance within 

which matches will be considered "exact". However, if one 

could use the Fourier transform coefficients of the 

superposition map to determine the location of the symmetry 

element, then the problem of "how close is close" can be 

eliminated. 

The unit cell of an alternate form of the elephant 

compound is represented in Figure 3.1. This form of the 

compound contains a glide line perpendicular to the y axis 

at y = 1/2. (The glide line reflects the image in the y 

direction and translates 1/2 of the unit cell in the x 

direction.) Placement of the glide line at some arbitrary 

position t, as shown in Figure 3.2, will generate the dashed 

image. If the glide line is incorrectly placed, then the 

dashed image will only partially overlap the the original. 
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solid image, if at all. However, when the glide line is 

placed in the correct location, the two images will overlap 

completely, maximizing the amount of overlap. 

This overlap can be expressed in terms of the product of 

the original map and the map produced by the symmetry 

operator, and is given mathematically by 

Q(S,t) = J M(r|i,0) M(r|S,t) dr , (3.3) 

where M(r|S,t) is the map produced by placing the symmetry 

operator S at the position t, Ê is the identity operator, 

and the integral is over all space. 

In general, a symmetry operator S, located at a position 

t (with t defined as shown in Figure 3.2), can be written in 

terms of its rotational component, R, and its translational 

component, T. The result of a symmetry operator S operating 

on a point r is given by 

Sr = R-r + (R -I)-t + T , (3.4) 

where I is the identity matrix. Using this definition, the 

Fourier transform coefficients of M(r|S,t), are given by 

Hh = 2 fj exp( 2iiih* Sr j ) 

=  Z  f 4 ' e x p ( 2 n i h * [ R * +  ( R  -  l ) ' t  +  T ] )  
j ^ ^ 

= Gjin exp(2nih*[(R - I)'t + T] ) , (3.5) 

where is a Fourier transform coefficient of the original 

superposition map. Thus, the map produced by the symmetry 

operator can be expressed in terms of the original map. 
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Using the Fourier transform of the maps M(r|i,0) and 

M(r|S,t), the expression for the overlap, Q(S,t) is 

Q(S , t )  = Z Z Gh Hk f exp(-2iii(h + k ) T )  dr 
h  k  

= Z Gh H_h . (3.6) 
h 

Substituting the definition of the coefficients into 

equation (3.6), the result 

Q(S , t )  = Z |Ghl|Gh'| exp(i(ah - aj^r +2nh'[(I - R ) - t  
h 

- T])) (3.7) 

is obtained, where h' = h'R. 

Ideally, if the G^'s had exact symmetry, then the term 

in the exponential would be zero for the correct translation 

and Q(S,t) would be a maximum, 

Qmax(s,t) = Z|Ghl|Gh,I . (3.8) 
h 

However, since the G^'s only have approximate symmetry, 

Q(S,t) will be less than Q'"®^(S,t), but will still likely be 

a maximum for the correct translation. For the purposes of 

comparison, all Q(S,t) values will be referenced to 

Omax(s,t) 

Since Q(S,t) is a maximum when the term in the 

exponential is small, one can alternatively try to minimize 

the phase difference between Gjj and G^f. If we define a 

function 



www.manaraa.com

32 

1 
S(S,t) = - Z iGhllGh'l ((ah - ahr)/2ll + h'(I - R)-t 

N 

- h'T)2 , (3.9) 

where |GhliGh'l included as a weighting function and N is 

the number of terms in the summation, it should be a minimum 

for the correct translation. 

In practice, both the Q and the S functions are 

evaluated. Q is computationally faster to evaluate, but the 

S function is more sensitive to the presence or absence of a 

symmetry operation. To determine the "best" location from a 

group of choices, a figure-of-merit (FOM) is used. The 

figure-of-merit is given by 

1 
FOM(S,t) = -

£ 

0(3't) ̂  
(3.10) 

where Qgroup is the maximum Q(S,t) value in the group, 

Sgroup is the minimum S(S,t) value in the group, and e is a 

parameter which takes into account the inability of the 

superposition to completely remove the Patterson symmetry. 

The form of e was established by trial-and-error: for t = 

{ ( 0 , 0 , 0 ) ,  ( 0 , 0 , J j ) ,  ( 0 , % , 0 ) ,  ( H , 0 , 0 ) ,  ( k i , 0 , % ) ,  

( H i H 1 0  )  t  i h i H i H ) ]  r 

= = 1 4. siMSziLil , (3.11) 

where j is the number of superposition vectors used to 

create the map, otherwise e = 1. 
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In the preceding derivations, it has been assumed that 

the symmetry elements of a space exist independently of one 

another. However, for a given space group, the presence of 

a symmetry element S^, located at a position t^, may 

restrict the positions (tj) of other symmetry elements, Sj. 

One of the properties of a group is that the product of 

two elements of the group must be itself an element of the 

group, which means 

SiS2r = Sgr . (3.12) 

Using the definition of a symmetry operator given in 

equation (3.4), the following relation between the locations 

of the symmetry operators and the translational components 

of the symmetry operators is obtained: 

R2*(Ri - I)'ti + (R2 - I)•t2 - (Rg - I)•t3 = Tg 

- R2T1 - T2 . (3.13) 

For the product of 3 symmetry operators, the analogous 

expression 

R3*R2'(Rl - I)•t^ + R3•(H2 ~ I)'t2 + (R3 - I)•tg — (R4 

- I)•t4 = T4 - R3*R2*Ti - R3*T2 - T3 , (3.14) 

is obtained. 

Thus, evaluating the functions Q(S,t) and S(S,t) while 

constraining the locations of different symmetry operators 

to satisfy equation (3.13) will enable the locations of the 

symmetry operators to be correctly determined. 
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Location of Multiple Images 

The Patterson superposition map is a partial 

deconvolution of the Patterson map. Only rarely does it 

approach a full deconvolution, which is an electron density 

map, or a single image of the structure. As such, it would 

be expected that the superposition map would contain more 

than one image. As shown in Chapter 2, an unweighted 

superposition or a superposition using a multiple vector 

will contain more than one image. These extra images, which 

could be entire images or fragments of images, will have the 

largest effect on the phases of the G^. The phases as 

obtained from the Fourier transform of this multiple image 

map would give erroneous values for the phases of the Fjj if 

a transformation such as equation (3.2) were used. These 

errors, when introduced into the EG relation, or a Z2 

relation, would likely cause the refinement to diverge. 

Thus it would be advantageous to be able to locate the 

additional image(s) in the superposition map and correct the 

Gjj for this (these) images. 

Let us again consider the glide form of the compound 

"Elephantine". If we have a superposition map containing 

two images of the structure, as shown in Figure 3.3, then 

shifting a copy of the map by the appropriate translation t 

should place the dashed image on the solid image. Thus the 

overlap of the two maps would be a maximum. Similar to the 
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case of the Q(S,t) function, this overlap function, Ç(t), is 

given by 

S(t) - X M(r|Ê,0) M(r + t|i,0) dr 

- E Z Gh Gjt exp(-2nik't) / exp(-2iri(h + k)T) dr 
h k 

- E Gh G_h exp(2nih*t) 
h 

- E |Gh|2 exp(2nih«t) . (3.15) 
h 

One also has to be concerned that there may be an 

inverse image in the map. This situation is analogous to 

the presence of a non-inverted image and thus, the overlap 

is given by 

S'(t) - E Gh Gh exp(-2nh-t) . (3.16) 
h 

Once the translation for the location of an additional 

image has been located, the Gh of the original map should be 

modified so as to remove the effect of the extra image. 

There are two reasonable methods of doing this. The first 

method would be to say that the transformed, or new, map is 

the sum of the original map and the map backshifted by the 

translation t. This is given by 

Mnew(r) . M(r) + M{r - t) . (3.17) 

The Fourier transform coefficient of the new map, in terms 

of the Fourier transform coefficients of the original map, 

are 

Ggew - Gh + Gh exp(2nih-t) . (3.18) 
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This definition has the disadvantage that if there is a peak 

at r but not at r - t in the original map, there will still 

be a peak in the new map at r. 

The second method would be to say that the new map is 

the product of the original map and the backshifted map, 

Mnew(r) = M(r) M(r - t) . (3.19) 

Using this definition, the Fourier transform coefficients of 

the new map are 

Ggew = Z Gh_k Gk exp(2nik-t) . (3.20) 
k 

This definition removes the disadvantage found in the 

additive map, but it has the disadvantage of distorting the 

original map if the structure is not an equal-atom case. 

In the case of an unweighted superposition, the presence 

of the inverse image causes a small, local maximum where the 

global minimum should be (i.e., the location of the symmetry 

element) in the S(S,t) function. A modified version of 

S(S,t) has- been developed which "mirrors" those phase 

differences, A {-n/2 < Û < n/2), that are greater than n/4 

across n/4, 

1 , 
S(S,t) = — Z |Ghl|Gh'I $2 (3.21) 

h 

where 
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û. -7 < 6 < % (3.22) 

" 2  "  
'  < i  

and 

A = a h - a h ' " * ' 2 l h * ( I - R ) * t - h * T  .  ( 3 . 2 3 )  

A plot of the "mirrored" S(S,t) function and the normal 

S(S,t) function is shown in Figure 3.4. The "mirrored" 

S(S,t) function removes the local minimum at the symmetry 

element location, but it also produces a solution 1/4 of the 

unit cell away from the actual solution. This is simply a 

result of the "mirroring" and such pseudo-solutions can be 

eliminated after examination of the Q(S,t) function. 
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CHAPTER 4. DETAILS OF THE HYPAD PROCEDURE 

Briefly, the HYPAb (HYbrid PAtterson superposition 

Direct methods) procedure can be broken down into the 

following steps: 

( 1 )  c a l c u l a t i o n  o f  a  s u p e r p o s i t i o n  m a p ,  u s i n g  t h e  

program SUPR in the CHES.CAT routine or other 

suitable program. 

(2) GCALC - calculation of the Fourier coefficients of 

the superposition map. 

( 3 )  L O C S Y M  -  l o c a t i o n  o f  t h e  s y m m e t r y  e l e m e n t s  i n  t h e  

superposition map using a reciprocal space approach 

(3a) MULTIM - location of multiple images, both forward 

and inverse. 

(3b) TRIM - removal of peaks in the superposition map 

using a symmetry operator and its location in the 

superposition map. 

(4) ORSHIFT - translation of the electron density map 

origin to the origin of the superposition map. 

( 5 )  P H A S S  -  d i r e c t  t r a n s f e r  o f  t h e  p h a s e s  o f  s o m e  o f  

the Gji to the Ejj. 

(6) EGOR - refinement of the some of the other phases, 

via the EG relationship. 

(7) FOUR - calculation of an electron density map and 

peak interpretation. 
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The procedure, except step (1), will be discussed in 

more detail. In addition, there are several graphics 

programs which are available and will also be discussed. 

The input files that must be created by the user and that 

are not created by the CHES.CAT procedure use keyword-style, 

input. These files and their keyword options are listed in 

Appendix A. All of the plots in Chapter 5 were generated 

using these programs. 

There are several companion programs which set up the 

input files for the individual steps. These programs, as 

well as ORSHIFT and PHASS, make extensive use of the screen 

managment facility of VAX/VMS. This allows parameters to be 

entered using a menu-format. 

HYPAD 

GCALC calculates the Fourier transform coefficients of 

the superposition map. The program calculates the 

coefficients by reading in the positions and the heights of 

the peaks in the superposition map. The "atomic" number of 

the peaks, or "atom-peaks" is estimated from the height of 

the origin peak, and the Gjj are calculated using an 

expression similar to equation (2.6). The Fjj are 

transformed into Ejj and a Wilson plot is calculated, 

providing both an approximate least-squares scale factor and 

an average isotropic thermal parameter value. A listing of 
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the number and percentage of the total of both and as 

a function of magnitude are output. This can provide early 

information as to how "clean" the superposition was. The 

closer the and the distributions agree, the likelier 

it is that the superposition map closely resembles the 

electron density map. 

LOCSYM uses the theory presented in Chapter 3 to 

determine the location and/or existence of symmetry elements 

in Patterson superposition maps. For symmetry planes, a 

preliminary test can be made to determine the plausibility 

of the existence of a symmetry plane. This is most useful 

when the extinction conditions do not clearly indicate the 

presence of a symmetry plane. 

The translation choices are determined by first 

calculating Q(S,t). Then for those translations that appear 

most promising, S(S,t) is calculated and the figure-of-merit 

is used to determine the "best translation choice. The 

translations for the symmetry elements are then compared for 

consistency based on the requirements for forming a group 

(i.e., in class mmm, a 2-fold in x operating on a 2-fold in 

y must give a 2-fold in z), and those symmetry elements that 

show consistency are indicated. 

For one- and two-dimensional translations, it takes a 

small amount of computer time to calculate the entire 

spectrum of translations (within 0.0001 for one dimension, 

0.01 for two dimensions). However, it requires a larger 
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amount of computer time to calculate the three dimensional 

translation spectrum. One-dimensional operators take about 

a minute of CPU time, two-dimensional operators take 1-4 

minutes, and three-dimensional operators take 5-10 minutes. 

(Of course, these times depend upon how many data are being 

using to do the calculations; larger data sets require 

longer times than smaller ones.) Experience has shown that 

inclusion of having magnitudes less than unity do not 

make a qualitative difference in the appearance of the 

Q(S,t) and S(S,t) functions. 

In practice, the S(S,t) function is usually calculated 

according to equation (3.9). However, the user is given the 

option of using an alternate weighting function, 

|Bhl|Ghl|Gh'|. 

MULTIM uses the theory presented in Chapter 3 to locate 

translations between multiple images. For centered cells, 

one of the solutions will be the centering operation. For 

example, a C-centered cell will produce values of Ç(t) that 

are approximately unity for the translations (0,0,0) and 

(H th10 ). 

TRIM reduces the list of peaks in the superposition map 

based on the presence of symmetry related peaks. This is an 

optional procedure, which I have found is very useful for 

eliminating extraneous peaks in the map. The symmetry 

operator to be used and its translation (as given by LOCSYM) 

are input and the program then searches the peaks list and 
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eliminates all peaks for which a match cannot be found. The 

range of peaks to be considered and the tolerance, in A, for 

finding a match are input by the user. 

After execution of TRIM, GCALC and LOCSYM should be 

rerun, using the new peaks list. This will provide new 

phases, which should be better, for use in the rest of the 

package. 

ORSHIFT modifies the phases of the Gjj so that they are 

referenced to the electron density map origin, according to 

equation (3.2). Once the phases have been modified, the 

symmetry-related Gjj are averaged. For centrosymmetric 

structures, the phases of the are constrained to be 0 or 

n. 

PHASS sets the phases of some of the larger Ejj by 

directly transferring the phase of the corresponding Gjj. 

The criterion for phase transferability is given by Wang^?. 

At this step, the user is given the option of creating a set 

of Fourier coefficients suitable for use with FOUR (step 7). 

The coefficients are constructed by combining the magnitude 

of the Ejj with the phase of the Gjj. Either the complete set 

of reflections or the set containing only those reflections 

for which phases can be transferred can be created. For 

simple centrosymmetric structures, direct transfer of all of 

the phases and then calculation of an electron density map 

can often result in a solution. 
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EGOR refines the phases of the using the EG 

relationship. The weighted tangent equation, as given by 

Wang37, is used for the refinement. In centrosymmetric 

space groups, the phases of the Ejj are constrained to be 0 

or n. Only those E^ with a magnitude greater than or equal 

to a minimum magnitude, supplied by the user, are refined. 

The user can set the maximum number of cycles of refinement, 

but the refinement will automatically terminate when no new 

phases are added or modified. A phase is added (or 

modified) when the weight for the new phase is greater than 

1. - n/100 (or the current weight), where n is the cycle of 

iteration. 

FOUR is actually a series of programs that calculate and 

interpret an electron density map. These routines were 

taken from the CHES.CAT procedure and modified to accept 

keyword input. 

Graphics Programs 

There are six graphics programs available in HYPAD. 

These are called QPLANES, QSPLOT, QROTLINE, QDATA, 2DDRAW, 

and 3DDRAW. Two of the programs, 2DDRAW and 3DDRAW, are 

interactive plotting routines that make use of the DI3000 

graphics routines. 

2DDRAW is a two-dimensional contouring program. The 

user is given control over both the region to be plotted and 
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the range of contours. Individual contour lines are drawn 

every ten percent of the contouring range. Depending upon 

the device used, the contours are drawn either in color or 

with different linestyles. 

3DDRAW is a contouring program that draws three-

dimensional "fishnet" projections. The user has more 

limited control over the appearance of the plot, and with 

because of the addition of a third dimension, all contour 

lines are drawn with the same color and linestyle. 

QPLANES generates a "plot" containing the Q(S,t) values 

for all space group symmetry planes perpendicular to the 

axis indicated. All five symmetry plane types (mirror, 

glides in the other two directions, n-glide, and d-glide) 

are plotted on the same graph. Plots for more than one axis 

can be generated in the same run. The "plot" is written out 

to a file as a series o£ HP graphics language commands and 

can be plotted on an HP plotter. 

QROTLINE generates a plot of the Q(S,t) values for a 

rotation symmetry operator, where one of the translation 

directions is fixed at some value. As in QPLANES, the plot 

is written out to a file as a series of HP graphics language 

commands. 

QSPLOT generates a plot containing the Q(S,t) and S(S,t) 

values for a symmetry plane. The Q(S,t) values are plotted 

in red and the S(S,t) values are plotted in green. The 

calculation of the S(S,t) values is the most time consuming 
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part of the program's execution. In order to use enough 

data so that an accurate representation of the S(S,t) 

function is obtained and still use a relatively small amount 

of CPU time, the fraction of |Ghl used should be the amount 

having IG^I > 1. Plots for more than one axis can be 

generated in the same run. 

QDATA generates Q(S,t) or S(S,t) values for a symmetry 

operator and writes the data to a file. This is the program 

that one would use in conjunction with the interactive 

graphics programs 3DDRAW and 2DDRAW, or some other graphics 

program (such as PICSURE). For operators that have two 

translational coordinates (i.e., rotation axes), the values 

are calculated for a square grid having points every .01 in 

each direction and.ranging from 0.0 to 0.5 inclusive. For 

operators that have one translational coordinate (i.e., a 

symmetry plane), the values are calculated for points 

between 0.0 and 0.5 inclusive, with a step size of .001. 
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CHAPTER 5. APPLICATION OF HYPAD TO THE SOLUTION OF 

KNOWN AND UNKNOWN STRUCTURES 

Any automated Patterson-based technique should be able 

to satisfy certain minimum requirements. These requirements 

should include the ability to solve structures, and 

applicability to structures of any symmetry type, both 

centrosymmetric and non-centrosymmetric. 

The heavy atom method for the determination of phases is 

based upon the assumption that the heavy atom(s) present in 

the structure make up a significant portion of the overall 

electron density. A general rule of thumb is that if Zjj^ > 

holds, where Zjj is the atomic number of the heavy 

atom, Z L  are the atomic numbers of the light atoms, and /u is 

in the range of h to 1; then the heavy atom method is likely 

to succeed. This condition is typically met by organo-

metallic compounds since they usually contain a central 

metal atom surrounded by an organic ligand. However, there 

are many organo-metallics that fail to fall into this 

category. In these cases, phase predictions based solely 

upon the metal atom are usually erroneous and subsequent 

electron density maps are of little use. Clearly, these 

cases require the positions of several atoms be determined 

and not just the position of the metal atom. 
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HYPAD Solution of Cr(CO)3*C6H6 

This compound represents a very simple organo-metallic, 

containing one metal atom per molecule. It also meets the 

criterion for the heavy-atom method easily (/u = 1.1). This 

makes it a very attractive first test for the reciprocal 

space methods. The HYPAD solution of this molecule turned 

out to be extremely straightforward. 

An ORTEP drawing of CrfCOfg'CgHg (BCT) is given in 

Figure 5.1. Extinction conditions on the observed 

intensities failed to uniquely determine the space group, 

but did indicate the presence of a 2i-screw axis parallel to 

b. Since the compound crystallizes in the monoclinic 

system, there are two possible space group choices, P2i 

(non-centrosymmetric) and PZ^/m (centrosymmetric). 

A vector corresponding to a Cr-C vector was used as the 

shift vector for a weighted superposition. The Fourier 

transform coefficients of the superposition map were 

determined and the Q(S,t) and S(S,t) functions were 

calculated for the mirror plane, the Z^-screw axis and the 

inversion operator. Figures 5.2 and 5.3 show plots of the 

Q{S,t) function for symmetry planes perpendicular to b and 

the 2i-screw axis parallel to b, respectively. The contour 

layers in Figure 5.3 are color-coded, with the contours 

every 10 percent of the range from 0 to the maximum Q(S,t) 

value on the map. The colors and their percentage levels 
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Table 5.1. Symmetry Operator Locations for Cr(C0)3'CgHg 

symmetry operator ta Q(S,t) S(S,t) 

—X,1/2+y,—z 
x,-y,2 

-x,-y,-z 

(0.1681, 
(0.0, 0 

(0.1681, 0 

0.0, 
.0009, 
.2515, 

0.4784) 
0.0) 
0.4782) 

0.8407 
0.9544 
0.7902 

0.0168 
0.0044 
0.0234 

^Translations are given in fractions of a unit cell. 

are: red (0%, 10%), orange (20%, 30%), yellow (40%, 50%), 

green (60%, 70%), and blue (80%, 90%). Consistent 

translations, listed in Table 5.1, were found for all three 

operators, indicating that the space group was P2i/m. It 

turns out that the Cr atom lies on the mirror plane (as does 

one of the carbonyls). 

Therefore, the large peak at the origin in the Q(S,t) 

function of the mirror in Figure 5.2 is from the Cr image. 

There is a smaller peak at 0.38 which is the location of the 

mirror plane in the C image. It is interesting to note that 

the ratio of the values of the Q(S,t) function at these two 

points is approximately the value of the weight applied to 

the superposition. There is only one large peak in the plot 

for the 2i-screw axis, and it is the location of the 2i-

screw axis in the Cr image. 

Since the origin in the space group lies on the 

inversion center, the were transformed using the 

inversion center location, according to equation (3.2). The 
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Figure 5.4. HYPAD-generated projection of CrfCOOg'CgHg 
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Table 5.2. HYPAD Atomic Coordinates® (xlO^) for 
CrtCOlg'CgHg 

atom # pk.ht. X y z 

Cr 1 505 1692 2500 4755 
01 8 90 -1971 2500 1050 
02 5 96 4140 642 2700 
CI 4 108 -520 2500 2398 
C2 3 111 3131 1396 3572 
C3 6 96 3234 1854 7962 
C4 7 95 1281 1260 7270 
C5 9 81 -739 1852 6534 

^Atomic coordinates are given as fractions of the unit 
cell. 

Table 5.3. Refined Atomic Coordinates® (xlO^) for 
CrfCOjg'CgHg 

atom X y z 

Cr 1682(l)b 2500 4755(1) 
01 -1917(7) 2500 1005(6) 
02 4094(6) 668(3) 2744(4) 
CI -523(9) 2500 2446(7) 
C2 3167(6) 1359(3) 3548(5) 
C3 3202(6) 1868(3) 7967(5) 
C4 121-5(7) 1231(3) 7271(5) 
C5 -753(6) 1858(4) 6585(6) 

^Atomic coordinates are given as fractions of the unit 
cell. 

^Estimated standard deviations for the refined 
coordinates are given in parentheses for the least 
significant digit. 
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Table 5.4. Comparative bond distances for CrfCOjg'CgHg 

atoms réfined(A) HYPAD(A) A(Â) 

Cr - CI 1.831(5)3 1.85 0.02 
Cr - C2 1.833(5) 1.78 -.05 
Cr - C3 2.231(3) 2.25 0.02 
Cr - C4 2.218(4) 2.20 —. 02 
Cr - C5 2.207(4) 2.20 -.01 
CI - 01 1.144(6) 1.13 — .01 
C2 - 02 1.143(4) 1.25 0.09 
C3 - C4 1.405(5) 1.37 — .03 
C4 - C5 1.389(5) 1.40 0.01 

^Estimated standard deviations for the refined distances 
are given in parentheses for the least significant digit. 

Table 5.5. Comparative bond angles for CrfCOlg'CgHg 

atoms refined(°) HYPAD(=) 6(°) 

C2 - Cr - CI 89.07(16)3 89.0 -.1 
C2 - Cr - C2m 86.75(21) 86.7 0.0 
Cr - CI - 01 179.26(46) 175.2 -3.9 
Cr - C2 - 02 179.30(30) 178.4 —, 9 
C3 - C4 - C5 120.09(34) 123.5 3.4 
C4 — C3 — C3m 120.03(21) 118.7 — 1.3 
C4 - C5 - C5m 119.87(23) 117.8 -2.1 

^Estimated standard deviations for the refined angles 
are given in parentheses for the least significant digits. 
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phases of 75 of the largest E],, representing 11.4% of the 

total number of E^, were set by directly assigning the 

phases of the corresponding G^. The E^ were then refined 

using the EG relationship and an electron density map was 

calculated. Figure 5.4 shows a projection of the electron 

density map onto the least-squares plane as generated by 

HYPAD. (The bonds in this projection were drawn in by 

hand.) The complete molecule is clearly identifiable from 

this picture. The HYPAD atomic positions, along with the 

peak number and peak heights are given in Table 5.2 and the 

refined atomic positions are given in Table 5.3. All of the 

unique non-hydrogen atoms are found in the top 9 peaks on 

the map. Tables 5.4 and 5.5 compare the refined and HYPAD-

generated bond distances and bond angles for this compound. 

All of the bond distances in the HYPAD molecule are within 

0.1Â of the refined distances and the HYPAD bond angles are 

within 4° of the refined angles. 

It is encouraging to note that even with incomplete 

initial knowledge of the space group, this structure can be 

solved with very little user input, and that the correct 

space group is obtained during the procedure. 

HYPAD Solution of FeP20C32H3iI 

This is a significantly more complicated compound, and 

was the first acentric structure studied using HYPAD. 
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Crystals of the compound were obtained from John Nelson's 

group (Department of Chemistry, University of Nevada-Reno). 

It was originally solved by another member of our group, 

Cathy Day, only after a very tedious Patterson analysis. As 

shown in Figure 5.5, FeP20C32H3( FEI ) is a very complex 

molecule, the type that it would be hoped that HYPAD would 

be useful in solving. 

This compound crystallizes in the orthorhombic system. 

The extinction conditions failed to uniquely determine the 

space group, but did indicate the presence of a c-glide 

plane perpendicular to a and a n-glide plane perpendicular 

to c. This leaves two possible space group choices; PcZ^n 

(non-centrosymmetric) and Pcmn (centrosymmetric). Direct 

methods failed to provide a solution in either of the 

possible space groups. 

A vector corresponding to a Fe-P bond distance was 

chosen as the shift vector for a weighted superposition. The 

Fourier transform coefficients were determined and the 

Q(S,t) and S(S,t) functions for all of the possible symmetry 

elements in the two space group choices were calculated. 

The best translations, and their corresponding Q(S,t) and 

S(S,t) values are listed in Table 5.6. Consistent 

translations were found for the c-glide plane perpendicular 

to a, the 2i-screw axis parallel to b and the n-glide plane 

perpendicular to c, indicating that the space group was 

Pc2in. Plots of the Q(S,t) function for symmetry planes 
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Figure 5.5. ORTEP drawing for FeP20C32B3iI 
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Table 5.6. Symmetry Operator Locations for FeP20C32H3iI 

symmetry operator ta Q(S,t) S(S,t) 

x+l/2,-y,-z (0.0, 0. 2548, 0.3106) 0.3273 0.0888 
-x,y+l/2,-z (0.0762, 0.0, 0.0604) 0.4191 0.0761 
-x,-y,z+1/2 (0.3287, 0.0046, 0.0) 0.3467 0.0874 
-x,y,z+1/2 (0.3260 , 0.0, 0.0) 0.4967 0.0703 

x,-y,z (0.0, 0 .1885, 0.0) 0.3130 0.0919 
x+l/2,y+l/2,-z (0.0, 0 .0, 0.3104) 0.4274 0.0749 

-X,-y,-z (0.4100, 0 .4845, 0.4745) 0.8301 0.0203 

^Translations are given in fractions of a unit cell. 

perpendicular to a and c are shown in Figures 5.6 and 5.7, 

respectively, and for the 2i' -screw axis parallel to b in 

Figure 5.8. 

There is a sizable peak in the Q(S,t) function for the 

c-glide plane at approximately 0.32, which corresponds to 

the location of the glide plane in the Fe image. It turns 

out that the P atom used in the superposition vector lies 

almost on the glide plane. Thus, the peak at the origin of 

the Q(S,t) function indicates the location of the glide 

plane in the P image. As in the case of CrtCOjg'CgHg, the 

ratio of the Q(S,t) values for these peaks is close to the 

weight used in the superposition. 

The Q(S,t) function for the n-glide plane perpendicular 

to c has several peaks, the largest of which, at 

approximately 0.31, is the location of the glide plane in 

the Fe image. The next highest peak is the location of the 
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glide plane in the P image. Again, the ratio of the Q(S,t) 

values for these two peaks is approximately the weight used 

for the superposition. 

There is one peak in the Q(S,t) function for the 2^-

screw axis parallel to b, at approximately x = 0.07, z = 

0.06, which is obviously much higher than the other peaks. 

This is the location of the screw axis in the Fe image. The 

next highest peak, at approximately x = 0.25, z = 0.39, is 

location of the Z^-screw axis in the P image. 

Another interesting feature in this map is the line of 

peaks having x = 0.25. If this line of the 2i-screw axis 

map is plotted on the same diagram as the n-glide plane 

perpendicular to c, as in Figure 5.9, an interesting feature 

is observed. There is a very strong correlation between the 

peaks in the two curves. Essentially every place that there 

is a peak in one curve, there is a peak in the other curve. 

As can be seen from the Q{S,t) functions for the 

symmetry planes, there is still quite a bit of pseudo-

symmetry remaining from the Patterson map in the 

superposition map. This pseudo-symmetry can interact with 

the actual symmetry of the unit cell to produce still more 

pseudo-symmetry. However, the general location of this 

"interaction" pseudo-symmetry can be predicted. 

Let us assume that there is still pseudo-symmetry 

remaining from the Patterson map in the form of a mirror 

plane perpendicular to a. In the Patterson map, this mirror 
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plane lies at x = 0, and so a point at x,y,z in the 

superposition map generates at pseudo-point at -x,y,z. 

Because of the n-glidè plane perpendicular to c, located at 

tg, a peak at x,y,z will have a symmetry-related peak at 

l/2+x,l/2+y,2t2-z. This symmetry-related peak will 

generate, by the pseudo-mirror, a pseudo-peak at 1/2-

x,l/2+y,2t2-z. The peak at x,y,z is "related" to the 

pseudo-peak at l/2-x,l/2+y,2t2-z by a pseudo-2i-screw axis 

parallel to b. This pseudo-2i-screw axis is located at 

(0.25, 0.0, tg). Thus, the two peaks in the Q(S,t) function 

at (0.25, 0.0, 0.14) and (0.25, 0.0, 0.31) are the locations 

of pseudo-symmetry elements caused by the n-glide plane in 

the P image and the Fe image, respectively. The n-glides 

should also produce pseudo-2i-screw axes parallel to a at 

(0.0, 0.25, 0.31) and (0.0, 0.25, 0.14). Examination of 

Table 5.6 shows that the "best" translation for the 2i-screw 

axis is at (0.0, 0.255, 0.311). There is also a peak at 

(0.0, 0.253, 0.138). 

Using similar reasoning, the c-glide plane perpendicular 

to a will produce pseudo-2i-screw axes parallel to c at (t*, 

0.0, 0.0). According to Table 5.6, the c-glide plane is 

located at (0.326, 0.0, 0.0). This should produce a pseudo-

2i-screw axis at approximately (0.326, 0.0, 0.0) and 

examination of Table 5.6 shows that the "best" translation 

for the 2i-screw axis is at (0.329, 0.005, 0.0). The c-

glide plane in the P image is located at (0.0, 0.0, 0.0) 



www.manaraa.com

67 

which should produce a pseudo-2i-screw axis at (0.0, 0.0, 

0.0). There is a peak in the Q(S,t) function for the 2i-

screw axis at (-.003, 0.003, 0.0). 

In certain cases, rotation (and screw) axes can produce 

pseudo-glide planes. A point at x,y,z, operated on by a 2i-

screw axis parallel to b located at (0.25, 0.0, tg), will 

produce a point at 1/2-x,1/2+y,2t2-z. Assuming a mirror 

perpendicular to a remains from the Patterson, a pseudo-peak 

at 1/2+x,1/2+y,2t2-z is generated which is "related" to the 

original peak at x,y,z by a pseudo-n-glide perpendicular to 

c at (0.0, 0.0, tg). Since the location of the 2i-screw 

axis parallel to b in the P image is located at (0.25, 0.0, 

0.39), the peak at (0.0, 0.0, 0.388) in the Q(S,t) function 

for the n-glide is the result of the interaction of pseudo-

symmetry with the 2i-screw axis in the P image. 

Since there is apparently a large amount of pseudo-

symmetry remaining in the superposition map, it is 

reasonable to expect that the Gj, would not be a good 

approximation to the E^. When the are transformed and 

the phases of the some of the largest Ejj assigned and then 

refined using the EG relationship, the electron density map 

produced is uninterpretable. However, the fact that the 

locations of the symmetry elements are known was used to 

determine the locations of the symmetry-related P atoms. 

The vectors between the Fe atom and the four symmetry-

related P atoms were then used in a multiple weighted 
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superposition. The list of peaks in the superposition map 

was reduced using the program TRIM. The 400 highest peaks 

in the list were checked for n-glide-related peaks in the 

list (using a tolerance for matching of 0.6Â), then the 

reduced list was checked for c-glide-related peaks, and the 

new reduced list so obtained was checked for 2i-screw-

related peaks. The Fourier transform coefficients of this 

new superposition map were determined and the Q(S,t) and 

S(S,t) functions for the three symmetry operators, c-glide 

perpendicular to a, n-glide perpendicular to c, and Z^-screw 

axis parallel to b, were calculated. Plots of the Q(S,t) 

function for symmetry planes perpendicular to a and c and 

the 2i-screw axis parallel to b are shown in Figure 5.10, 

Figure 5.11 and Figure 5.12, respectively. 

As can be seen in these plots, the amount of pseudo-

symmetry in the superposition map has been significantly 

reduced. The were transformed according to equation 

(3.2) and the phases of some of the largest Ejj assigned by 

direct transfer. The phases of those with |Ejj| >1.2 

were refined using the EG relation and an electron density 

map calculated. Figure 5.13 shows the projection of the 

electron density map onto the least-squares plane. A 

sizable part of the molecule can be determined by 

examination. The HYPAD atomic positions, along with the 

peak number and peak heights are given in Table 5.7, and the 

refined atomic positions are given in Table 5.8. A 
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Figure 5.11. Q(S,t) values for symmetry planes c for FEI 
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Figure 5.13. HYPAD-generated projection of FeP20C32H3iI 
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Table 5.7. HYPAD Atomic Coordinates® (xlO^) for FeP20C32H3il 

atom # pk.ht. X y z 

I 1 359 2072 3141 5015 
Fe 2 144 -4223 5008 4399 
Pi 3 87 -2892 3941 4695 
P2 4 77 -2460 5425 3858 
C23 12 36 -914 5764 4388 
CIS 25 23 -2838 3459 5748 
C14 28 23 -4028 3159 5997 
C7 29 23 -2867 2847 4228 
C19 31 22 -1029 4279 4411 
C8 38 20 5846 2619 3911 
C24 39 20 -785 5134 4995 
CIS 40 20 -4078 2978 6688 
C18 58 16 -1825 3587 6194 
C20 70 15 -1155 4552 3634 

^Atomic coordinates are given as fractions of the unit 
cell. 
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Table 5.8. Refined Atomic Coordinates® (xlO^) for 
FeP20C32H3iI 

atom X y z 

I 2059(1)b 3175(2) 5058(1) 
Fe -4235(3) 5000 4429(2) 
Pi -2878(6) 3965(4) 4714(3) 
P2 -2467(6) 5440(4) 3853(3) 
C23 -1022(21) 5838(12) 4369(12) 
C13 -2829(22) 3608(12) 5658(12) 
C14 -3993(21) 3306(16) 5917(12) 
C7 -3007(22) 3011(13) 4231(10) 
C19 -1177(20) 4312(12) 4506(11) 
C8 -4187(23) 2774(14) 3920(12) 
C24 -855(18) 513(12) 4903(11) 
CIS -3975(25) 2998(15) 6695(13) 
CIS -1643(23) 3717(15) 6113(14) 
C20 -1272(20) 4630(12) 3651(11) 

^Atomic coordinates are given as fractions of the unit 
cell. 

^Estimated standard deviations for the refined 
coordinates are given in parentheses for the least 
significant digit. 
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Table 5.9. Comparative bond distances for FeP20C32H3iI 

atoms refined(A) HYPAD(A) 6(Â) 

Fe - PI 2.240(7)3 2.26 0.02 
Fe - P2 2.173(7) 2.13 -.04 
PI - C7 1.815(22) 2.00 0.19 
PI - C13 1.876(22) 2.09 0.21 
PI - C19 1.821(21) 2.00 0.18 
P2 — C2 0 .1.826(21) 1.98 0.15 
P2 - C23 1.839(22) 1.90 0.06 
C7 - C8 1.358(31) 1.45 0.09 

C13 - C14 1.327(30) 1.36 0.03 
C13 - C18 1.425(32) 1.31 — .12 
C14 - CIS 1.514(33) 1.30 -.21 
C19 - C20 1.656(29) 1.50 — .16 
C19 - C24 1.582(28) 1.79 0.21 

^Estimated standard deviations for the refined distances 
are given in parentheses for the least significant digit. 
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comparative table of bond distances can be found in Table 

5.9. 

A least-squares refinement of the atom positions, with 

fixed isotropic thermal parameters, obtained from HYPAD 

resulted in a residual index (R factor) of 16.8%. This 

represents an excellent start! The remainder of the 

molecule, except hydrogen atoms, was found in the first 

electron density map calculated from these results. 

These results show a that a good initial model for the 

structure of a fairly complex compound can be derived from 

the superposition map. The bond distances in the HYPAD-

gernerated fragment are within 0.21Â of the refined bond 

distances. The errors in the distances of bonds containing 

C atoms are less than ten times the standard deviation of 

the refined distances. Considering the fact that the 

nominal resolution in the map was on the order of 0.26 -

0.31Â and that the only small portion of the Ejj were used in 

generating the electron density map, this result is quite 

satisfactory. These results also illustrate one of the 

major difficulties of superposition techniques, that of 

pseudo-symmetry. However, even with the presence of a large 

amount of pseudo-symmetry, HYPAD was able to determine the 

correct symmetry and the locations of the symmetry elements. 

Although, in this case, the single-superposition map does 

not give a good phase set for the a method for obtaining 

a good phase set does present itself. Use of the locations 



www.manaraa.com

77  

of the symmetry operators to find more vectors to use for 

additional superpositions is a trivial procedure, and, as 

this case shows, it can have tremendous rewards. 

HYPAD Solution of Ni(C6O3H9)2CI2 

This compound (NIT) - shown in Figure 5.14 - is a 

slightly more complex organo-metallic compound than 

Cr(CO)3•C5H5. It was originally solved using the "heavy-

atom" method by Bill Jenson's group (Department of 

Chemistry, South Dakota State University). The HYPAD 

solution of this compound turned out to be very routine. 

This compound crystallizes on the monoclinic crystal 

system. The extinction conditions on the intensities 

uniquely indicated that the space group was the 

centrosymmetric choice P2i/c. A vector corresponding to a 

Ni-0 vector was chosen as the shift vector and an unweighted 

superposition was done. The Fourier transform coefficients 

of the superposition map were determined and the Q(S,t) and 

S(S,t) functions were calculated for the 2i-screw axis 

parallel to b, the c-glide plane perpendicular to b and the 

inversion operator. Plots of the Q(S,t) function for the 

2i-screw axis and symmetry planes perpendicular to b are 

shown in Figures 5.16 and 5.15, respectively. Table 5.10 

lists the translations for the operators, as well as the 



www.manaraa.com

78 . 



www.manaraa.com

Q values for symmetry planes i b 
MIT, 1 NK> wèlflhlad «upeipoalUom, Ivgest 25,6X IG] load 

irtnw c-gllde a-giide m-gliib d-gfide 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

-.2 
0.5 0.0 0.2 0.3 0.4 0.1 

y 
Figure 5.15. Q(S,t) values for symmetry planes X b for NIT 



www.manaraa.com

80  

0.5 

Q 

o 
o 

o 
A 

0.0 X 
Figure 5.16. Q(S,t) values for 2i-screw axis 

NIT 

b for 



www.manaraa.com

81  

Table 5.10. Symmetry Operator Locations for Ni(C6O3H9)2CI2 

symmetry operator ta Q(S,t) S(S,t) 

-X , l/2+y,-z 
x , -y ,2+1 /2  
-x,-y,-z 

(-.0024, 
(0.0, 0 

(—.0024, — 

0.0, 
.2475, 
.0029, 

0.2493) 
0.0) 
-.0003) 

0.8845 
0.9343 
0.8317 

0.0140 
0.0073 
0.0213 

^Translations are given in fractions of a unit cell. 

values of the Q(S,t) and S(S,t) functions for the 

translations. 

There is essentially one peak in the Q(S,t) function for 

the c-glide plane, and it corresponds to the location of the 

glide plane in the Ni image. Similarly, there is one large 

peak in the Q(S,t) function for the 2i-screw axis. For this 

compound, the Ni atom lies on an inversion center. Thus, 

all vectors between the Ni atom and all other atoms in the 

cell (except the other Ni atom) are multiple vectors. 

According to superposition theory, there should be 2m 

images in the superposition map, where m is the multiplicity 

of the superposition vector. The fact that a weighted 

superposition was done only suppresses the 0 images relative 

to the Ni images, and does not eliminate these images. The 

vector used was of multiplicity two (the vector from the Ni 

atom to the 0 atom is the same as the vector from the 

inversion-related 0 atom to the Ni), so there should be four 

images in the superposition map. However, two of the 
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images, those with Ni at the tail of the shift vectors, 

exactly superimpose on top of one another, which leaves a 

result of three images. 

The peaks in the Q(S,t) function for the c-glide plane 

at 0.16 and 0.35 are the locations of the glide plane in the 

0 images. The large peak at the origin of the Q(S,t) 

function for the mirror plane indicates that there is still 

a sizable amount of pseudo-symmetry left in the 

superposition map. The Q(S,t) function for the 2i-screw 

axis has smaller peaks at (0.08, 0.0, 0.38) and (0.42, 0.0, 

0.12) which are the locations of the 2i-screw axis in the 0 

images. 

Since the Ni atom lies on an inversion center, and by 

convention, the origin of the electron density map in a 

centrosymmetric space group is taken to be on an inversion 

center, there is no need to transform the Gjj according to 

equation (3.2). The that were symmetry-related were 

averaged. The phases of 196 of the largest Ejj were set by 

direct transfer of the phases of the corresponding G^. The 

Ejj were refined using the EG relationship and an electron 

density map was calculated. Figure 5.17 shows the 

projection of the electron density map onto the least-

squares plane. The molecule is clearly identifiable in this 

figure. The Cl atoms are present in the electron density 

map, but are not included in the projection because they are 

not bound to any part of the structure. All of the unique 



www.manaraa.com

83  

13  

12 

3 10 

8 

Figure 5.17. HYPAD projection of Ni(C603Hg)2Cl2 
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Table 5.11. HYPAD Atomic Coordinates® (xlO^) for 
Ni(C603H9)2Cl2 

atom # pk.ht X y z 

Ni 1 529 -9 30 10 
Cl 2 217 -4931 -1441 -2259 
01 5 92 1576 147 2535 
02 4 94 -1933 -817 940 
03 6 90 1902 -962 -260 
Cl 14 47 2184 -525 3543 
C2 13 47 265 -956 3735 
C3 7 68 -935 -1418 2210 
C4 12 50 491 -2002 1351 
C5 9 56 2469 -1582 1180 
C6 11 52 3736 -1112 2850 

^Atomic coordinates are given as fractions of the unit 
cell. 

Table 5.12. Refined Atomic Coordinates® (xlo4) for 
Ni(C603Hg)2Cl2 

atom 1 X y z 

Ni 0 ^ 0 0 
Cl -4927(2)b -1462(7) -2265(1) 
01 1591(4) 173(2) 2495(3) 
02 -1877(4) -818(2) 945(3) 
03 1877(5) -987(2) -202(3) 
Cl 2270(6) -553(3) 3579(5) 
C2 307(6) -998(3) 3802(5) 
C3 -888(6) -1447(3) 2194(5) 
C4 533(7) -2009(3) 1460(5) 
C5 2495(7) -1576(3) 1211(5) 
C6 3775(7) -1120(3) 2819(5) 

^Atomic coordinates are given as fractions of the unit 
cell. 

^Estimated standard deviations for the refined 
coordinates are given in parentheses for the least 
significant digit. 
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Table 5.13. Comparative bond distances for Ni(CgOsHg)2CI2 

atoms r e f i n e d ( A )  HYPAD( A )  6(À) 

Ni 01 2.048(4)3 2.05 0.00 
Ni - 02 2.056(4) 2.06 0.00 
Ni - 03 2.029(5) 2.06 0.03 
01 - Cl 1.457(8) 1.35 -.11 
02 - C3 1.466(8) 1.44 -.03 
03 - C5 1.470(8) 1.50 0.03 
Cl - C2 1.537(10) 1.47 -.07 
Cl - C6 1.532(10) 1.58 0.05 
C2 — C3 1.533(9) 1.48 -.05 
C3 - C4 1.518(10) 1.59 0.07 
C4 - C5 1.526(11) 1.49 -.04 
C5 C6 1.518(10) 1.59 0.07 

^Estimated standard deviations for the refined distances 
are given in parentheses for the least significant digit. 
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Table 5.14. Comparative bond angles for Ni(Cg03Hg)2Cl2 

atoms refined(") HYPAD(°) A(°) 

01 _ Ni _ 02 86.55(17)3 84.9 -1.7 
01 - Ni - 03 90.64(18) 89.9 0.7 
02 - Ni - 03 87.79(18) 88.3 0.5 
Ni - 01 - Cl 119.37(35) 121.8 2.4 
Ni — 02 - C3 119.71(38) 118.3 -1.4 
Ni — 03 - C5 120.59(38) 118.1 -2.5 
01 - Cl - C2 107.04(15) 107.5 0.5 
01 — Cl — C6 111.28(51) 112.6 1.3 
C2 - Cl - C6 111.58(56) 113.2 1.6 
Cl — C2 - C3 113.72(53) 116.3 2.6 
02 - C3 - C2 107.07(49) 108.2 1.1 
02 - C3 - C4 110.33(50) 107.4 -2.9 
C2 — C3 - C4 112.32(58) 113.7 1.4 
C3 — C4 — C5 114.24(56) 112.8 -1.4 
03 — C5 — C4 107.03(56) 108.0 1. 
03 — G5 - C6 109.88(54) 108.7 -1.2 
C4 — C5 — C6 112.16(56) 115.1 2.9 
C5 - C6 - Cl 114.38(59) 109.3 -5.1 

^Estimated standard deviations for the refined angles 
are given in parentheses for the least significant digits. 
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non-hydrogen atoms in the molecule are found in the top 14 

peaks. The HYPAD atomic positions, peak number and peak 

heights are given in Table 5.11 and the refined atomic 

positions are given in Table 5.12. Tables 5.13 and 5.14 

compare the bond distances and bond angles obtained from the 

HYPAD and refined positions. Again, the HYPAD-generated 

bond distances are within O . l lA of the refined distances and 

the HYPAD-generated bond angles are generally within 3° of 

the refined angles. Considering the fact that the nominal 

resolution in the map was 0.25 - 0.41Â, these results are 

excellent. 

The symmetry averaging of the is important as it 

removes many peaks in the electron density map which are 

"related" to actual peaks by pseudo-symmetry. Without 

symmetry averaging, the unique atoms are found in the top 19 

peaks in the map. However, many of the extraneous peaks are 

pseudo-related to actual peaks by a mirror or a 2-fold axis, 

neither of which is present in the space group P2i/c. Many 

of these pseudo-peaks are more prominent than the actual 

peaks. When the are averaged, only one pseudo-related 

peak remains, a pseudo-chlorine, at approximately H the peak 

height of the actual chlorine atom. 
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HYPAD Solution of (NHC5H5)2lio 

This compound foritied as a side product of the reaction 

that produced crystals of (NHCgH5)Sbl4 (see Appendix B). 

One of more interesting physical characteristics of this 

compound is that it forms extremely long needle-shaped 

crystals, several centimeters in length. It wap initially 

thought that these crystals were an alternate crystalline 

form of the antimony compound. However, the structure, 

shown in Figure 5.18, indicates otherwise. 

This compound crystallizes in the orthorhombic crystal 

system. The extinction conditions upon the observed 

intensities only indicated the presence of a b-glide plane 

perpendicular to c. Thus, there were three possible space 

groups: Pmmb (centrosymmetric), P2mb (non-centrosymmetric) 

and Pm2ib (non-centrosymmetric). 

Direct methods failed to provide a solution in any of 

the three possible space groups. Attempts to analyze the 

Patterson map by hand were fruitless. A vector which seemed 

a likely candidate for an Sb-I vector was used for an 

unweighted superposition, since the weighting factor for 

this vector is almost unity. The Fourier transform 

coefficients of the superposition map were calculated. The 

locations of all of the possible symmetry elements in the 

three space groups are listed in Table 5.15, along with 

Q(S,t) and "mirrored" S(S,t) values. Translations 
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0.0 y 0.5 

Figure 5.20. Q(S,t) values for 2i-screw axis || b for 

UNK 
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Table 5.15. Symmetry Operator Locations for (NHC5H5)2lio 

symmetry operator ta Q{S,t) S(S,t) 

x,-y,-z 
-x,y+l/2,z 

-x,-y,z 
-x,y,z 
x,-y,z 

x,y+l/2,-z 
-x,-y,-z 

(0.0, 0.4220, 0.3517) 
(0.0, 0.0, 0.1011) 
(0.0, 0.1728, 0.0) 
(0.2500, 0.0, 0.0) 
(0.0, 0.1728, 0.0) 
(0.0, 0.0, 0.1011) 

(0.0000, 0.4220, 0.3517) 

0.9772 
0.5232 
0.5459 
0.5018 
0.5465 
0.5236 
0.9766 

0.0030 
0.0037 
0.0047 
0.0001 
0.0046 
0.0036 
0.0031 

^Translations are given in fractions of a unit ( zell. 

consistent with the b-glide plane perpendicular to c were 

found only for the mirror perpendicular to a and the 

screw axis parallel to b, indicating that the correct space 

group was Pm2ib. The Q(S,t) functions are plotted for the 

mirror perpendicular to a, the 2i-screw axis parallel to b 

and the b-glide plane perpendicular to c in Figures 5.19, 

5.20, 5.21, respectively. For this space group, the origin 

is located on the 2i-screw axis. The positions of the ends 

of the shift vector relative to the location of the 2i-screw 

axis were calculated and used- as input to a least-squares 

refinement. The rest of the molecule was found by 

successive structure factor and electron density map 

calculations. 

Although the structure was not immediately evident from 

the superposition map, it is important to note that the 

space group and the location of the symmetry elements could 
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be obtained. Even in a worst-case scenario, with an 

unweighted superposition and a very vague idea as to what 

types of atoms are in the structure, one can at least get a 

"foot in the door" and continue with a least-squares 

refinement. 

HYPAD Solution of Cu(CgOsHg)CI2 

This compound (CUT), shown in Figure 5.22, was expected 

to be the Cu analogue to Ni(CgHgOs)2Cl2; however its 

structure turned out to be different. It was originally 

solved by Bill Jenson's group (Department o£ Chemistry, 

South Dakota State University) using direct methods. 

Although the position of the Cu atom can be obtained from 

the Patterson map, it does not provide enough phase 

information to solve the structure via the "heavy-atom" 

method. 

This compound crystallizes in the monoclinic crystal 

system. The extinction conditions on the intensities 

indicated the presence of a c-glide plane perpendicular to b 

and C-centering. There are two possible space group 

choices; Cc (non-centrosymmetric) and C2/c 

(centrosymmetric). 

A vector corresponding to a Cu-0 vector was chosen to 

use as a superposition shift vector. Selection of an 

appropriate vector was complicated by the fact that the 
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Cu-Cl bond distances are comparable to the Cu-0 bond 

distances. A weighted superposition was done and the 

Fourier transform coefficients of the map were calculated. 

Q(S,t) and S(S,t) functions for all of the possible symmetry 

elements in both space groups were calculated and the best 

translation choices are listed in Table 5.16. A plot of the 

Q(S,t) values for symmetry planes perpendicular to b is 

shown in Figure 5.23. 

There is still a large amount of pseudo-symmetry 

remaining as indicated by the large peaks in the Q(S,t) 

functions of the mirror and a-glide planes, as well as the 

large Q values for the rotation-type axes and the inversion 

center translations. The locations of the 2-fold axis, the 

2i-screw axis (generated from the 2-fold axis by the C-

centering operation), and the inversion centers are not 

consistent with the location of the c-glide plane, 

indicating that the space group is Cc. The other symmetry 

elements are pseudo-symmetry from the Patterson map which 

has symmetry C2/m. 

There are two large peaks in the c-glide plane Q(S,t) 

function. The peak at 0.18 is the location of the glide 

plane in the Cu image. The other large peak, at 0.32 is the 

result of pseudo-symmetry. The peak at 0.07 is the location 

of the glide plane in the 0 image and the peak at 0.43 is 

the result of pseudo-symmetry. The C-centering operation 
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Table 5.16. Symmetry Operator Locations for Cu(€503119 )Cl2 

symmetry operator ta Q(S,t) S(S,t) 

(-.0005, 0.0, 0.0012) 0.9004 0.0201 
(0.2495, 0.0, 0.0012) 0.9004 0.0201 
(0.0, 0 .1861, 0.0) 0.5820 0.0907 
(0.0, .4361, 0.0) 0.5820 0.0907 

(-.0005, 0 .0025, 0.0013) 0.8554 0.0293 
(0.2495, 0 .2525, 0.0011) 0.8554 0.0293 

-x,y,-z 
-x,y+l/2,-z 
x,-y,z+1/2. 

l/2+x,-y,l/2+z. 
-x,-y,-z 
-Xf-y,-z 

^Translations are given in fractions of a unit cell. 

generates an n-glide plane one quarter of the unit cell away 

from the c-glide plane, which is clearly indicated in the 

plot. 

Even though there is a large amount of pseudo-symmetry 

remaining in the superposition map, when the are 

transformed, the phases of the are refined using the EG 

relationship and an electron density map is calculated, the 

Cu atom, both Cl atoms and all three 0 atoms are all found 

in the largest 9 peaks on the map. The Cu atom and the Cl 

atoms are the three largest peaks in the electron density 

map. The three other large peaks in map are pseudo-related 

to the Cl atoms and one of the oxygen atoms. 

Two additional weighted superpositions were carried out 

using the Cu-Cl vectors. The list of peaks in the 

superposition map was reduced using TRIM. The 300 highest 

peaks in the list were checked for c-glide-related peaks in 

the list (using a tolerance of 0.6Â). The Fourier transform 
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Figure 5.25. HYPAD projection of Cu(C6O3H9)CI2 
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Table 5.17. HYPAD Atomic Coordinates® (xlO^) for 
Cu(C603H9)Cl2 

atom # pk.ht X y z 

Cu 1 264 -18 1879 -1 
Cll 2 111 1563 276 818 
C12 3 107 -1355 580 -2499 
01 4 59 470 1870 2192 
02 9 39 988 4355 782 
03 5 58 -1426 3430 -672 
CI 16 24 338 3396 2779 
C2 14 25 1303 4747 3026 
C3 10 37 1045 5650 1954 
C4 18 23 -505 6256 369 
C5 12 27 -1407 4869 160 
C6 15 24 -908 4090 1674 

^Atomic coordinates are given as fractions of the unit 
cell. 

Table 5. 18. Refined Atomic Coordinates® (xl04) for 
Cu(Cg03H9)Cl2 

atom X y z 

Cu 0 b 1892(1) 0 
Cll 1593( 2) 225(4) 869(3) 
C12 -1242( 2) 575(4) -2406(3) 
01 579( 6) 1797(8) 2297(7) 
02 1017( 5) 4366(8) 829(7) 
03 -1344( 6) 3395(9) -681(7) 
CI 528( 9) 3475(13) 2945(11) 
C2 1372( 8) 4872(14) 3214(11) 
C3 945( 9) 5703(12) 1692(11) 
C4 -363( 9) 6335(13) 557(12) 
C5 -1209( 8) 4963(12) 262(11) 
C6 -788( 9) 4162(13) 1788(12) 

^Atomic coordinates are given as fractions of the unit 
cell. 

^Estimated standard deviations for the refined 
coordinates are given in parentheses for the least 
significant digit. 
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Table 5.19. Comparative bond distances for Cu(C5O3H9)Cl2 

atoms r e f i n e d ( A )  HYPAD( A )  6( A )  

Cu _ Cll 2.243(3)9 2.22 -.02 
Cu - C12 2.232(3) 2.30 0.07 
Cu - 01 2.151(6) 2.10 -.05 
Cu — 02 2.126(6) 2.12 -.01 
Cu - 03 1.949(7) 2.05 0.10 
01 - CI 1.464(11) 1.39 -.07 
02 - C3 1.454(11) 1.61 0.16 
03 - C5 1.493(11) 1.41 -.08 
CI - C2 1.497(14) 1.62 0.12 
CI - C6 1.538(14) 1.47 -.07 
C2 - C3 1.521(13) 1.21 -.31 
C3 - C4 1.518(14) 1.78 0.26 
C4 - C5 1.476(14) 1.59 0.11 
C5 C6 1.520(13) 1.46 — .06 

^Estimated standard deviations for the refined distances 
are given in parentheses for the least significant digit. 
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Table 5.20. Comparative bond angles for Cu(Cg03Hg)Cl2 

atoms refined(") HYPAD(®) A(°) 

Cil Cu _ C12 92.86(11)3 94.3 1.4 
cil - Cu - 01 92.15(19) 96.2 4.0 
cil - Cu - 02 91.59(18) 90.7 -.9 
cil - Cu - 03 177.84(20) 177.8 0.0 
C12 - Cu - 01 143.15(18) 141.7 -1.5 
C12 — Cu - 02 130.80(17) 129.9 -.9 
C12 - Cu - 03 89.28(20) 87.9 -1.4 
01 - Cu - 02 85.49(23) 86.7 1.2 
01 - Cu - 03 86.30(25) 82.5 — 3.8 
02 — Cu - 03 86.79(26) 87.7 0.9 
Cu - 01 - Cl 119.10(50) 122.3 3.2 
Cu - 02 - C3 119.93(51) 117.3 —2.6 
Cu - 03 - C5 124.02(51) 128.9 4.9 
01 — Cl — C2 •109.27(78) 98.6 -10.7 
01 - Cl - C6 109.00(74) 112.9 3.9 
C2 - Cl - C6 112.33(78) 114.7 2.4 
Cl - C2 - C3 114.32(78) 122.5 8.2 
02 - C3 - C2 110.87(72) 109.9 -1.0 
02 - C3 - C4 106.75(72) 91.0 -15.8 
C2 - C3 - C4 112.17(80) 116.9 4.7 
C3 - C4 - C5 114.45(80) 113.3 -1.2 
03 — C5 - C4 110.01(73) 100.5 • -9.5 
03 - C5 - C6 107.03(69) 106.3 -.7 
C4 — C5 — C6 113.09(78) 112.8 -.3 
C5 - C6 - Cl 112.69(78) 117.8 5.1 

^Estimated standard deviations for the refined angles 
are given in parentheses for the least significant digits. 
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coefficients of this new superposition map were determined. 

A plot of the Q(S,t) function for symmetry planes 

perpendicular to b is shown in Figure 5.24. As can be seen 

in this plot, the amount of pseudo-symmetry has been reduced 

significantly. The were transformed and the phases of 

the Eh that were refined using the EG relationship were used 

to calculate an electron density map. Figure 5.25 shows the 

projection of the electron density map onto the least-

squares plane. All of the non-hydrogen atoms were found in 

the largest 18 peaks in the map. The HYPAD atomic 

positions, peak number and peak height are given in Table 

5.17 and the refined positions are given in Table 5.18. The 

bond distances and bond angles obtained from the HYPAD and 

the refined positions are listed in Tables 5.19 and 5.20, 

respectively. 
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CHAPTER 6. CONCLUSION 

I hope that the results presented in Chapter 5 

successfully show that HYPAD is a viable alternative to the 

existing automatic phase determining techniques. We have 

shown that for simple organo-metallics, complete structural 

solutions can be obtained and for more complex compounds, a 

sizable part of the structure can be obtained. It is 

encouraging to note that if the space group is not uniquely 

defined by the extinction conditions, HYPAD also appears to 

be able to correctly determine the space group. 

Although the presence of spurious peaks in the 

superposition map can cause erroneous phase predictions, 

centrosymmetric structures seem to be less susceptible to 

this than do non-centrosymmetric structures. This is not 

unexpected, since there are only two phase choices for the 

structure factors of centrosymmetric structures. It is very 

unlikely that the spurious peaks will be in the correct 

orientation to cause the phase to be shifted from 0° to 180° 

(or 180° to 0°). It is more likely that the phase would be 

shifted by several degrees, say 20 or 30°, which could have 

a significant effect on the EG refinement in the non-

centrosymmetric case. 

There is a growing need for a procedure that can work as 

an alternative to direct methods. Very often, when direct 

methods fails, it is the result of a poor starting set of 
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phase s .  Th e  u se r  who  i s  i ne xpe r i e nc e d  i n  t he  u se  o f  d i r e c t  

me thods  i s  f a c e d  w i th  a  d i l em m a  when  t he  f i r s t  a t t emp t  

f a i l s .  Usua l l y ,  t he r e  i s  no  obv ious  cho i ce  a s  t o  wha t  

changes  t o  make  i n  t he  s t a r t i ng  s e t  o r  i n  t he  pha se s  

i n i t i a l l y  a s s i gne d  t o  t he se  r e f l e c t i ons .  I t  ha s  been  shown  

t ha t  a  good  i n i t i a l  s e t  o f  pha se s  can  be  ob t a ined  f rom t he  

t r a n s fo rmed  Fou r i e r  c oe f f i c i en t s  o f  t he  supe rpos i t i on  map ,  

and  t ha t  t he se  pha se s ,  when  r e f i ned  v i a  t he  EG r e l a t i on ,  can  

p roduce ,  i n  mos t  c a se s ,  e i t he r  t he  s t r uc tu r e  o r  a  s i z a b l e  

f r agmen t  t he r eo f .  

Fu r the rmore ,  i f  HYPAD f a i l s  i n  i t s  f i r s t  a t t em p t ,  o the r  

supe rpos i t i o n  vec to r s  c a n  be  chosen  by  u s in g  t he  l oca t i on  o f  

t he  symm et r y  e l emen t s  t o  l oca t e  sym m et ry - r e l a t ed  peaks .  The  

supe rpos i t i o n  map  ob t a ine d  u s in g  t he se  vec to r s  w i l l  

gene ra l l y  p rov ide  a  g o o d  s t a r t i ng  s e t  o f  phase s .  
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CHAPTER 7. FUTURE WORK 

It should be realized that HYPAD is still in the 

developmental stage. A number of the structures selected up 

to this point were chosen to provide a means of testing the 

computer code rather than to fully explore the the 

capabilities of the method. There are still areas of the 

hybrid Patterson superposition-direct methods philosophy 

that need to be examined. It is to be fully expected that 

there will be structures that resist solution by this 

method. It would be a great benefit, then, to examine these 

types of structures to try to pinpoint at which aspect(s) of 

the current methodology difficulties are encountered. 

One of the more obvious difficulties that is encountered 

is the presence of multiple images. As has been shown, 

weighted superpositions reduce this problem, but does not 

eliminate it. Since the S(t) and S'(t) functions, as well 

as the Q(S,t) function, can be used to determine the 

location of one image relative to another, it would seem 

that it should be possible to use the Gjj from an unweighted 

superposition to gain information about a single image, but 

very little work has been done in this area. 

In many of the structures which seem to be unsolvable, 

the space group symmetry is questionable. Patterson, and to 

a lesser extent, superposition maps contain additional 

symmetry which can further cloud the issue. While the 
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r e su l t s  ob t a ined  conce rn ing  t he  de t e rmina t i on  o f  space  g r oup  

s ymme t ry  a r e  ve r y  en co u rag ing ,  t he  u se r  mus t  be  consc ious  o f  

t he  e f f ec t s  o f  p s eudo - s ymmet ry .  The  u l t ima t e  goa l ,  t he n ,  

wou ld  be  t he  au toma t i c  de t e rmina t i on  o f  t he  space  g roup  by  

t he  p rog ram wi thou t  u se r  i npu t .  Obv ious ly ,  i f  t h i s  

au tom a t ion  co u l d  be  done ,  t h en  t he  r e s t  o f  t he  p ro c e d u re  

cou ld  f o l l ow .  

The routine could automatically shift the phases of the 

Gjj, assign and then refine the phases of the Ejj. A quantity 

which would indicate how good the phases are, such as the 

residual index, would be calculated and depending upon its 

value, one of two choices would be made. If the phases were 

considered "good", the refined phases would be reintroduced 

into the EG or Z2 relation to produce a new refined set of 

phases. The iterations of phase refinement would continue 

until the phase set has converged. If the phases were 

considered "poor", the routine would use the locations of 

the symmetry elements to automatically calculate the 

positions of atoms that are symmetry-related to the atoms in 

the shift vector used in the original superposition. These 

interatomic vectors would then be used as shift vectors in 

multiple superpositions. New Fourier coefficients would be 

calculated and the process restarted, like the approach used 

in the solution of FeP20C32H3iI described in Chapter 5. 

I de a l l y ,  t he  p rocedu re  wou ld  be  au toma ted  t o  t he  po in t  

t ha t  t he  u se r  w ou ld  on ly  n eed  t o  i nd i ca t e  t he  peak  t o  be  
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used for the first superposition, and the procedure would 

take over, making all of the decisions, and outputing the 

solution. In fact, it might be possible to have the routine 

make the choice of the first superposition vector using the 

distance of the peak from the origin and the peak height as 

criteria for its decision. 

One always has to worry that the EG relation may produce 

phases for the Ejj that resemble the superposition map more 

than they resemble the phases of the electron density map. 

It may turn out that it is best if both the EG and E2 

refinements are carried out in tandem. In the early stages 

of refinement, the phases obtained from the EG relationship 

would have more weight than those obtained from the I2 

relation, but as the refinement proceeded, the EG phases 

would decrease in importance and the E2 phases would 

increase in importance. 
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APPENDIX A .  KEY WO RD  O P TI O N S  IN  H Y PA D  

A l l  o f  t he  u se r - c r ea t ed  i npu t  f i l e s  t ha t  a r e  no t  c r ea t ed  

by  t he  CHES.CAT p rocedu re  u se  a  keyword  f o rm a t  f o r  t he  impu t  

o f  pa r ame te r s  i n to  t he  i nd iv id u a l  p r og r ams  i n  HYPAD.  Th i s  

t ype  o f  app roach  a l l ow s  t he  u se r  t o  e a s i l y  s ee  wh i ch  

pa r ame te r s  w i l l  be  u sed ,  and  g r e a t l y  f a c i l i t a t e s  

mod i f i c a t i on  o f  t he  i npu t  f i l e s  Keywords  f o r  t he  i nd iv idua l  

p rog rams  a r e  l i s t ed  be low .  

On ly  t he  f i r s t  t h r ee  l e t t e r s  o f  e ach  keyword  a r e  

r e qu i r e d .  I n  t he  fo l l owing  l i s t s ,  t he  keywords  a r e  g i ve n  i n  

uppe rca se  l e t t e r s  and  t he  t ype  o f  va lue  f o r  t he  k ey wo r d  ( i f  

a n y )  i s  i nd i c a t e d  by  one  o f  t h r ee  codes :  n  =>  i n t e ge r  

num ber ,  x  =>  r e a l  ( f l oa t i ng  p o i n t )  number ,  c  =>  cha r a c t e r  

s t r i ng .  Some  o f  t he  keyw ords  have  de f au l t  va lue s  t ha t  t he  

p ro g ram w i l l  u se  i f  t he  k eyword  i s  mi s s ing ;  t he s e  a r e  

i nd i ca t ed  i n  [ ] ' s .  Excep t  i n  c e r t a i n  ca se s ,  i t  i s  p o s s ib l e  

t o  have  more  t han  one  keyword  ( and  i t s  accompany ing  va lue )  

on  a  l i ne .  The  keyword  and  i t s  va lue ( s )  mus t  be  on  t he  sam e  

l i ne .  Spec i a l  c a s e s  when  on ly  one  keyword  c an  ap p ea r  on  a  

l i ne  a r e  i n d i c a t e d  i n  t he  de sc r i p t i on  o f  t he  app rop r i a t e  

keyword .  
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GCALC.INP 

PEAKS n - the number of peaks to be read in from 

xxxSU PR. PKS  and used to calculate the 

Gt|. This number must be less than 

or equal to 200, and if it is 0, then the 

entire superposition map will be read in 

and transformed. 

(Ma p  op t i on  i s  no t  ava i l ab l e  a t  t h i s  t ime )  

2THETA X - the maximum 20 value to use in 

calculating the G^. 

WAVELENGTH X - the wavelength of the radiation used. 

LAUE n - code indicating the Laue symmetry. The 

Laue symmetries and their corresponding 

codes are: 

1 => triclinic, -1 symmetry 

2 => monoclinic, b-unigue, 2/m symmetry 

3 => monoclinic, c-unique, 2/m symmetry 

4 => orthorhombic, mmm symmetry 

5 => tetragonal, 4/m symmetry 

6 => tetragonal, 4/mmm symmetry 

7 => trigonal, -3 symmetry 

8 => trigonal, -3m symmetry 

9 => hexagonal, 6/m symmetry 

10 => hexagonal, 6/mmm symmetry 

11 => cubic, -3m symmetry 
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LATTICE C 

UNKNOWN 

KNOWN 

12 => cubic, m3m symmetry 

- code indicating the centering of the 

lattice. 

P => Primitive 

A => A-centered 

B => B-centered 

C => C-centered 

I => l-centered (body centering) 

F => F-centered (face centering) 

R => R-centered (rhombohedral) 

- space group is unknown. If this keyword 

is included anywhere in the input file, 

the space group will be considered 

unknown, even if the KNOWN keyword appears 

later in the file. 

- space group is known (inclusion of this 

is optional) 

LOCSYM.INP 

2THETA XX - the minimum and maximum 20 values to 

use. All in this range will be used in 

the calculations. 

LAUE n - code indicating the Laue symmetry. See 

above for the appropriate codes. 
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WEIGHTS c - indicates the weighting scheme to be 

used in calculating S(S,t). "c" must be 

one of the choices given below, no 

abbreviations are allowed. 

UNIT => iGhGh'l weights 

E(h) => lEhGjjGjjrl weights 

FRACTIONG X - the fraction of the Gjj to be used in 

calculating 0(8,t) and S(S,t). 

NSUPERPOS n - the number of superpositions that were 

done. 

PLOT c - indicates that graphics output is 

desired. The commands required to draw the 

plots of the Q(S,t) values for the 

symmetry planes will be written out. 

HP => HP-GL commands 

UNWTSUPPOS - indicates that unweighted superpositions 

were done and that the "mirrored" form of 

S(S,t) will be calculated. 

WTSUPERPOS - indicates that weighted superpositions 

were done (inclusion of this is optional 

as it is the default condition). 

SPECIAL - If the user suspects that the tail atom 

of the superposition (i.e., the one at the 

origin) actually lies on a special 

position, then this option should be used. 

The figure-of-merit approach sometimes 
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passes over a valid translation choice 

because the program thinks that it is a 

result of the superpostion failing to 

completely remove the Patterson symmetry. 

This option will save the two "best" 

translations for later analysis. 

SYMMETRY - indicates that the rest of the file 

contains symmetry operations. Therefore, 

it MUST be the last keyword in the list. 

It must stand alone (i.e., do not include 

a symmetry operator on the same line 

because the operator will be ignored and 

do not include it on the same line with 

other keywords as they will 

also be ignored). 

The remaining lines are formatted (A1,A26), and contain 

the variables COPT and CSYMM (if COPT is a #, then the 

following line is free-format)-. 

COPT - a special option indicator 

(blank) => no special option 

* => space group symmetry operator 

check is desired, only works for 

symmetry planes 
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# => the translation for which the 

symmetry operator is to be evaluated 

follows. The next line is a free 

format line containing the x,y,z 

coordinates of the translation. 

CSYMM - the symmetry operator in alpha-numeric 

form. 

MULTIM.INP 

2THETA XX - the minimum and maximum 20 values to 

use. All in this range will be used in 

the calculations. 

FRACTIONG X - the fraction of the to be used in 

calculating t(t) and Ç'(t). 

FOURIER.INP 

MAP n - indicates which type of Fourier map 

should be calculated. Map type 3 is the 

usual choice for the FOUR routine. The 

map types and their codes are; 

1 => Patterson, using |Fjj| 

2 => Patterson, using |Fjj|2 

3 => Electron density, using F^tobs) 
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4 "> Difference electron density, using 

Fh(obs) - Fh(calc) 

5 => Electron density, using Fj^(calc) 

6 => Electron density, using 

Aji(calc)*Fh(obs)2 and Bh(calc)*Fh(obs)2 

7 => Electron density, using 

Ah( calc ) *Fh( obs ) and Bjjt calc ) *F|i( obs ) 

ORIENT n - the map orientation. HYPAD requires 

that orientation 2 be used. 

across down layers 

1 => X y z 

2 => X  z  y 

3 => y X z 

4 => y z X 

5 => z X y 

6 => z y X 

FIELDWIDTH n - the number of columns of printed output 

for each grid point. 

2 => 2 columns, base 10 

3 => 3 columns, base 10 

4 => 4 columns, base 10 

6 => 2 columns, base 36 (0-9,A-Z) 

7 => 3 columns, base 36 

LOWVALUE n - the minimum value printed on the map 
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LAUE n - Laue symmetry of the crystal. NOTE I 11 

This is a different Laue code than what is 

used in the rest of the package. 

1 => -1 symmetry, triclinic 

2 => 2/m symmetry, monoclinic 

3 => mmm symmetry, orthorhombic 

4 => -3 symmetry, trigonal 

5 => -3m symmetry, trigonal 

6 => 4/m symmetry, tetragonal 

7 => 4/mmm symmetry, tetragonal 

8 => 6/m symmetry, hexagonal 

9 => 6/mmm symmetry, hexagonal 

10 => m3 symmetry, cubic 

• 11 => m3m symmetry, cubic 

BLANKS n - the number of blank lines between 

printed output lines 

GRID n n n - the number of grid points along the 3 

crystal axes. The first number of the 

number of grids along a, the second is the 

number of grids along b, and the last is 

the number of grids along c. The allowed 

values are 0, 16, 32, 64, 128. 

LAYER n n - the minimum and maximum layers to be 

calculated. The minimum must be > 0 and 

the maximum must be < the number of grids 

in the layer direction. 
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OFFSET n n - the number of grids to shift the origin 

of the map across and down. These are 

usually 0. 

SCALE X  - the scale factor. 2/volume gives 

electron density maps in units of 

electrons/A^. 

FOOD X - the value of F(OOO) on the same scale as 

the map, otherwise set it equal to zero. 

ACROSS c - fraction of the unit cell across the 

page. 

QRTR => 1/4 of the cell 

HALF -> 1/2 of the cell 

FULL => full cell 

DOWN c - fraction of the unit cell down the page. 

QRTR => 1/4 of the cell 

HALF => 1/2 of the cell 

FULL => full cell 

OUTPUT c - the type of output desired. BOTH is the 

usual choice. For the rest of the FOUR 

routine to work, the binary file must be 

created. 

PRTR => line printer only 

DISK =>  b ina r y  f i l e  on ly  

BOTH => both line printer and binary 

file 

CENTRO - indicates a centrosymmetric cell. 
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NONCENTRO - indicates a non-centrcsymmetric cell. 

LATTICE c - indicates the lattice symmetry 

P => Primitive 

A => A-centered 

B -> B-centered 

C => C-centered 

F => Face-centered 

I => Body-centered 

R => Rhombohedral 

SYMMETRY n - the number of symmetry elements, 

excluding the center of symmetry and the 

lattice symmetry operations. This must be 

the last keyword in the list, as the 

program assumes that all lines following 

this contain symmetry operators in alpha­

numeric form (X,l/2+Y,Z), one per line. 

This keyword must also be on a line by 

itself, any other keywords on this line 

will be ignored. 

PRESEARCH. INP  

The first line of the file must be the title (80 

characters maximum). It is primarily used as a header for 

the SEARCH output. The following lines in the file contain 

keywords or symmetry elements. 



www.manaraa.com

120 

ATOMS n  -  the  number  o f  a t oms  i n  t he  

asymmetric unit, > 1. 

ANOMALOUS n - the number of types of atoms with 

significant anomalous scattering 

effects. Usually, these are atoms 

whose atomic numbers are greater than 

9. 

CELL X X X X X X - the unit cell lengths a, b, c (in A) 

and the angles alpha, beta, gamma (in 

degrees). 

SYMMETRY n - the number of symmetry elements, 

excluding the center of symmetry and 

the lattice symmetry operations. This 

must be the last keyword in the list, 

as the program assumes that all lines 

following this contain symmetry 

operators in alpha-numeric form 

(X,l/2+Y,Z), one per line. This 

keyword must also be on a line by 

itself, any other keywords on this 

line will be ignored. 

SEARCH.INP 

This routine is part of MULTAN80. The list of keywords 

are included here as a convenience. If the first card is 
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blank, defaults will be assumed throughout. 

PEAKS n - n is the number of peaks to be searched 

for in the map. The default is (ll*n)/9 

where n is the number of independent atoms 

(excluding hydrogens). If two clusters 

are within 2.8Â of each other, the default 

is automatically increased to (3*n)/2. 

ATOMS n - n is the number of additional atoms 

input by the user to be included in the 

interpretation of the map (number of peaks 

+ number of additional atoms must be less 

than 200). See below. 

NOJOIN - requests that no interpretation of the 

peaks be done. The program prints a list 

of the highest peaks and then stops. This 

condition is set automatically if no 

chemical bonds can be found by the 

program. 

PROJECTIONS n - the number of orthogonal projections of 

each cluster to be plotted (to a maximum 

of three). The default is to always plot 

the least-squares projection, and to plot 

the projection orthogonal to the least-

and most-squares planes if the cluster is 

cylindrical or spherical. n equal to zero 
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DOUT X 

DMIN X 

DMAX X 

AMIN X 

AMAX X 

METAL n 

MOLE 

suppresses all plotting. 

- interpeak distances less than x Â are 

tabulated. [2.4] 

- minimum allowed bond length in the 

interpretation, in Â. [1.1] 

- maximum allowed bond length in the 

interpretation, in Â. [1.95] 

- minimum allowed bond angle in the 

interpretation, in ®. [85] 

- maximum allowed bond angle in the 

interpretation, in [145] 

- the number of heavy atoms in the 

asymmetric unit. When performing an 

interpretation of a cluster, the program 

will assume that the n highest peaks 

correspond to these heavy atoms. They 

will not be included in the interpre­

tation, and all peaks within the maximum 

bond length will be marked as spurious. 

This is useful when the compound contains 

a metal atom ionically bonded to the 

organic part of the molecule. Using this 

facility will prevent spurious peaks 

caused by diffraction ripples around the 

metal being interpreted as atoms. 

- this is specified if molecular 
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connectivity is to be input by the user 

(see below). 

END - this terminates the free format read and 

must be present if any keyword has been 

specified. 

If 'ATOMS' is specified, the card following the one 

containing 'END' has the run time format for reading the n 

sets of atomic coordinates (e.g., (3F10.5) ). Then follow n 

cards with the atomic coordinates in that format. This 

facility will normally be used when a difference Fourier is 

being interpreted. The inclusion of the subtracted atoms 

ensures that they are included in the bond-lengths and 

angles calculations, and also that they appear in the 

lineprinter picture of the structure. 

If 'MOLE' is specified, free format cards after the 

'END' keyword, (and after the atom cards above if they are 

present), specify the molecular connectivity. The bond 

codes allow the program to compare the molecular fragment it 

finds with that input here. They are not used by the 

program in its search for a fragment and are therefore 

optional. 

The bond codes for any molecule are found as follows: 

(a) Draw the molecule or fragment whose chemical 

structure (not necessarily geometry) is known. 
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e.g. , 0—0 0 

/ \ / \ 
0  0 — 0  0  
\ / \ / 

0 — — 0  0  

(b) Number the atoms in any order 

e.g., 1 — 3 8 

/ \ / \ 
4 2—6 10 

\ / \ / 
5—7 9 

(c) Specify the connections to each atom as follows: 

1 3  4 / 2 3 6  7 / 3  1  2 / 4  1  5 / 5  4 7 / 6 2 8  9 / 7  2  5 / 8  6  
10/9 6 10/10 8 9// 

which means atom 1 is bonded to atoms 3 and 4; 2 is 

bonded to 3, 6 and 7, etc. 

Redundant information may be removed from the bond 

sequence 

e.g., 13 4/236 7/4 5/5 7/6 8 9/8 10/9 10// 

or 13 4/236 7/5 4 7/8 6 10/9 6 10// 

in which each bond is specified only once. 

(d) Type any of these descriptions in free format, 

ending the information with //. The maximum number 

of atoms in the molecule is 200. Up to five 

molecules can be input in this way and the complete 

data is terminated with /// 

QPLANES.INP 

It is possible for the program to generate more than one 

plot per run (simply by having more than one SYMMETRY 
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keyword), but all non-SYMMETRY keywords after the first 

SYMMETRY keyword will be ignored (i.e., if the first plot is 

drawn in color with solid lines, so will the rest of them). 

2THETA XX- the minimum and maximum 29 values. Only 

the Gh which lie in this range will be 

• used to calculate Q(S,t). [min=0.0, 

max=50.0] 

FRACTIONG x - the fraction of the largest | Gjj | to be 

used in calculating Q(S,t). [1.0] 

COLOR - indicates colors are to be used to 

differentiate between the symmetry planes. 

This is the default choice and inclusion 

of this keyword implies that the curves 

will be drawn using solid lines. The 

colors and the corresponding symmetry 

planes are: 

mirror => red (pen 2) 

b/c/a -glide => green (pen 3) -

c/a/b -glide => yellow (pen 4 

n-glide => blue (pen 5) 

d-glide => orange (pen 6) 

BLACK - indicates that all curves are to be 

drawn as black lines. Inclusion of this 

keyword implies that the the curves will 

be drawn using different linestyles. 

LINETYPES - indicates that the curves will be drawn 
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using different line types. The line 

types and the corresponding symmetry 

planes are: 

mirror => solid 

b/c/a -glide => dashed 

c/a/b -glide => dash-do 

n-glide => long dash-short dash 

d-glide => long dash-short dash-

short dash 

- indicates that the curves will be drawn 

using solid lines. This is the default 

choice. 

- the axis to which the symmetry planes 

are perpendicular. 

QROTLINE.INP 

- the minimum and maximum 20 values. Only 

the Gjj which lie in this range will be 

used to calculate Q(S,t). [min=0.0, 

raax=50.0] 

- the fraction of the largest iGjjl to be 

used in calculating Q(S,t). [1.0] 

- the symmetry operator for which the 

Q(S,t) values are to be calculated. 

[-X,Y,-Z] 
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- indicates which coordinate is to be kept 

fixed. [Z if rotation axis is parallel 

to a or b, Y if parallel to c] 

- indicates the value of the fixed 

coordinate. [0.25] 

- indicates how much the varying 

coordinate will be shifted. This option 

is usually not used. [0.0] 

QSPLOT.INP 

It is possible for the program to generate more than one 

plot per run (simply by having more than one SYMMETRY 

keyword), but all non-SYMMETRY keywords after the first 

SYMMETRY keyword will be ignored (i.e., if the first plot 

uses 30% of the largest |Ghl, so will the rest of them). 

2THETA XX- the minimum and maximum 20 values. Only 

the Gji which lie in this range will be 

used to calculate Q(S,t) and S(S,t). 

[min=0.0, max=50.0] 

FRACTIONG X - the fraction of the largest |Gjj| to be 

used in calculating Q(S,t) and S(S,t). 

[1.0] 

SYMMETRY c - the symmetry operator for which the 

Q(S,t) and S(S,t) values are to be 

FIX c 

LOCATION X 

SHIFT X 
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calculated. (-X,Y,-z] 

NORMAL - indicates that the normal S(S,t) 

expression (equation (3.9)) will be used. 

Inclusion of this keyword is optional as 

it is the default. 

MIRROR - indicates that the "mirrored" form of 

the S(S,t) expression (equation (3.21)) 

will be used. 

QDATA.INP 

It is possible for the program to generate more than one 

data set per run (simply by having more than one SYMMETRY 

keyword), but all non-SYMMETRY keywords after the first 

SYMMETRY keyword will be ignored (i.e., if the first plot 

uses 30% of the largest | Gjj I , so will the rest of them). 

- the minimum and maximum 28 values. Only 

the Gjj which lie in this range will be 

used in the calculation. [min=0.0, 

max=50.0] 

- the fraction of the largest | Gjj | to be 

used in the calculation. [1.0] 

- indicates that Q(S,t) values for the 

symmetry operator will be calculated. 

Inclusion of this keyword is optional as 

2THETA X X 

FRACTIONG X 

QFUNCTN 
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SFUNCTN 

NORMAL 

MIRROR 

SYMMETRY C 

it is the default. 

- indicates that S(S,t) values for the 

symmetry operator will be calculated. 

- indicates that the normal S(S,t) 

expression (equation (3.9)) will be used. 

This keyword is ignored unless SFUNCTN is 

also specified. 

- indicated that the "mirrored" form of 

the S(S,t) expression (equation (3.21)) 

will be used. This keyword is ignored 

unless SFUNCTN is also specified. 

- the symmetry operator for which the 

values are to be calculated. 

[-X,Y,-Z] 

Sample Input Files 

Sample input files for two of the programs, LOCSYM and 

FOUR, are listed below. This were used in the solution of 

CrfCOjg'CgHg (Chapter 5). 

LOCSYM.INP 

2THETA 0.0 50.0 

LAUE 2 

WEIGHTS UNIT FRACTIONG 0.300 

NSUPERPOS 1 WTSUPERPOS 
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SYMMETRY 

-X,Y+l/2,-Z 

*X,-Y,Z 

—X f—Y,—Z 

FOURIER.INP 

CENTRO MAP 3 ORIENT 2 

OUTPUT BOTH GRID 32 64 32 

ACROSS FULL DOWN FULL LAYER 0 32 

FIELDWIDTH 4 BLANKS 0 LOWVALUE 1 

LAUE 2 SCALE 0.45634 FOOO 0.000 OFFSET 0 0 

LATTICE P 

SYMMETRY 2 

X,Y,Z 

-X,l/2+Y,-Z 

diad on b 

inv. diad (mirror) on b 

inversion center 
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APPENDIX B. CRYSTAL STRUCTURE DETERMINATIONS 

Although the major emphasis of this research has been 

involved with the development of a new structural solution 

strategy, crystallographic studies of several compounds have 

been undertaken. This Appendix contains detailed 

discussions of these studies. 

Structure Determination of (NHCgHgjSbl^ 

Introduction 

The crystal structure of pyridinium antimony(III) 

tetraiodide, ( NHC5H5)Sbl4, has been determined as part of an 

ongoing series of investigations into halo-coordinated 

antimony compounds. Previously, the structures of chloro-

and bromo-coordinated single- and mixed-valence state 

antimony anions in the presence of various cationic species 

had been determined using X-ray diffraction. In these 

structures, the antimony ions coordinated to the halogens 

exist at the center of octahedral units or units best 

described as fragments of an octahedron^^-SO, in some of 

the compounds, the trihalide and halide ions, as well as the 

halogen molecule, coexist in the crystal with the antimony-

centered units, forming a bridge between the separated 

antimony-halide units41f43,44,47. However, this compound, 
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like its chloro- and bromo-analogues^^', forms infinite 

chains involving the Sbl^" anion via halide linkages. 

Experimental 

Crystal Data (CgHgNHjSbl^, M = 709.48, orthorhombic, a 

= 25.156(6), b = 13.960(2), c = 7.838(1) Â, V = 2752.5 , 

space group Pbca from systematic absences Okl:k=2n+l, 

h01:l = 2n+l and hkO:h=2n+l, = 3.42 g cm~^, Z = 8, //(Mo) = 

108.6 cm-1. 

Preparation 3.48 g of Sbl] (s) were dissolved in 16.92 

ml of concentrated HI (aq). 1.0 ml of pyridine was added to 

the solution producing a thick black precipitate. The 

mixture was vacuum filtered and the precipitate was dried 

overnight in a desiccator using 40 ml of concentrated H2SO4 

as the desiccant. The precipitate was recrystallized in hot 

concentrated HI (aq), allowed to cool overnight and then 

placed in an ice bath for several hours until orange 

crystals had formed. 

Crystallographic Studies For data collection, a 

crystal of approximate dimensions 0.20 x 0.20 x 0.15 mm was 

mounted in a 0.2 mm diameter thin-walled capillary tube, 

sealed with wax, and attached to a standard goniometer head. 

The crystal was centered on a four-circle DATEX X-ray 

difftactometer. Four preliminary w-oscillation photographs 

were taken at various (|) settings. The approximate positions 

of 12 reflections were selected from photographs and used as 
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input to an automatic indexing program^^. The resulting 

reduced cell and reduced cell scalars indicated a primitive 

orthorhombic lattice. The predicted layer spacings for this 

cell were observed, within experimental error, on three 

axial w-oscillation photographs. 

Intensity data were collected at room temperature (20°C) 

using Mo K* (X = 0.71069 Â) radiation on the above mentioned 

diffractometer equipped with a graphite monochromating 

crystal and interfaced to a VAX 730 computer in a real-time 

mode. A total of 2846 intensities were measured, 

corresponding to reflections in octants hkl and hkl, using 

an w-step scan technique with a scan half-width of 0.5 

degree. The data were collected to a maximum sin0/X of 0.5; 

an additional shell of data with 0.5 < sin0/X < 0.6 was 

collected but was found to be quite weak on the average, and 

was not used in the final refinement of the structure (see 

below). As a check on the stability of the crystal, the 

intensities of seven standard reflections were measured 

every 50 reflections during data collection. No significant 

decay was observed. 

Accurate unit cell parameters were obtained by carefully 

centering 25 independent reflections, having 16° < 20 < 33°, 

on the diffractometer and inputing the +20 values of these 

reflections into a least-squares fitting program. Intensity 

data were corrected for absorption (Tmin/^max = 

0.045/0.082), as well as for Lorentz-polarization effects. 
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Of the 1 8 8 6  reflections measured having sin0/X < 0 . 5 ,  the 

1039 that had I > 3CT(I) were considered to be observed. The 

symmetry equivalent reflections were averaged ( R G V  °  0 . 0 4 9 ) ,  

yielding 607 reflections which were used in the refinement 

of the structure. 

Solution and Refinement 

The position of the antimony atom was determined from 

analysis of a sharpened Patterson map. The positions of the 

remaining non-hydrogen atoms were determined from successive 

structure factor^Z and electron density map calculations^^. 

The positional and isotropic thermal parameters of the 

antimony and iodine atoms were initially refined using a 

block-matrix least-squares procedure. The anisotropic 

thermal parameters of the antimony and iodine atoms, the 

isotropic thermal parameters of the pyridine ring, and the 

positional parameters of all the non-hydrogen atoms were 

refined to their final value using a full-matrix least-

squares procedure, minimizing the function Zw(|Fg|-|FQI )^ to 

a conventional residual index of R = ( Z | | Fq | - | F,, | | )/ï | Fq | = 

0 . 0 3 9  a n d  a  w e i g h t e d  r e s i d u a l  i n d e x  o f  =  [ E w ( | F Q | -

I Fj,  I )  ̂ /2w I FQ I 2  ]  1/2 = 0.039, where w = l/o^FF). The 

positions of the hydrogen atoms were calculated and not 

refined. A secondary extinction correction was applied and 

gave a coefficient of Y = 5.303 x 10~®. The final 

positional and averaged isotropic thermal parameters, with 
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their standard deviations, of the Sbl^" anion and the 

pyridinium ring are given in Tables B.l and B.2, 

respectively. The final anisotropic thermal parameters of 

the Sbl4~ anion are given in Table B.3, and bond distances 

and angles are given in Table B.4. Refinement was also 

carried out with inclusion of data with sin0/X > 0.5, but 

did not give improved standard deviations of the parameters 

(R = 0.049). 

Discussion 

The environment of the antimony atom in (CgHgNHjSbl^ is 

shown in Figure B.l; infinite chains are formed similar to 

those found in the chloro and bromo analogues, even though 

the crystal system of the iodo compound is orthorhombic and 

the chloro and brpmo compounds crystallize in the monoclinic 

system. A view of several unit cells is shown in Figure 

B.2. Each antimony lies at the center of a distorted 

octahedral structure, with all of the I-Sb-I bond angles 

within five degrees of 90°. The Sb-I3 and Sb-I4 bond 

distances, 2.809(4) Â and 2.828(4) À respectively, are 

slightly longer than the 2.67Â Sb-I bond distances found in 

Sbig by electron diffraction techniques^®. II and 12 are 

bridging iodines, connecting neighboring Sbl^" moieties to 

form infinite chains via somewhat asymmetric bridges. The 

shorter Sb-Il and Sb-I2 bridging distances are 3.021(4) and 
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Table B.l. Positional® (xlO^) and Averaged Isotropic 

Thermal (Â^, xlO^) Parameters for (C5H5NH)Sbl4 

atom X y z Uav^ 

Sb 1260(1)C 1614(1) -7978(3) 57 
11 1954.6(9) 1700(2) -4820(3) 73 
12 565.1(9) 1641(2) -11129(3) 68 
13 1976(1) 245(2) -9290(3) 84 
14 579(1) 231(2) -6544(3) 84 

^Positional parameters are given as fractions of a unit 
cell. 

bUav - (Uii + U22 + «33)73. T = exp[-2n2(Uiih2a*2 + 

U22k2b*2 + U33l2c*2 + 2Ui2hka*b* + 2Ui3hla*c* + 

2U23klb*c*) ]. 

^Estimated standard deviations are given in parentheses 
for the least significant digits. 

Table B.2. Positional® (xlO*) and Isotropic Thermal (A2, 

xlo3) Parameters for the Cation in (C5H5NH)Sbl4 

atom . X y z ub 

N 1083(13)C -791(22) -12564(37) 89(11) 
C2 1567(17) -975(28) -13148(53) 89(12) 
C3 1669(16) -1945(28) -13146(53) 87(12) 
C4 1332(18) -2605(25) -12670(50) 88(12) 
C5 861(19) -2328(33) -12073(60) 119(17) 
C6 746(15) -1398(25) -11984(48) 77(11) 

^Positional parameters are given as fractions of a unit 
cell. 

^T = exp[-8n2u(sine/X)2]. 

^Estimated standard deviations are given in parentheses 
for the least significant digits. 
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Table B.3. Anisotropic Thermal Parameters® (Â^, xlO^) for 

the Anion in (NHCgHgiSblj 

atom Uii "22 U33 "12 "13 "23 

Sb 51(l)b 53(1) 67(2) 2(2) -1(1) 0(2) 
11 63(2) 73(1) 83(2) 16(2) 14(1) 12(2) 
12 59(2) 69(2) 75(2) 12(2) 8(1) 3(2) 
13 66(2) 80(2) 107(2) 18(2) 4(2) 29(2) 
14 69(2) 78(2) 104(2) -14(2) -1(2) -28(2) 

®T = exp[-2 ( Uiih^a*^ + U22k^b*2 + 11331^0*2 + 

2Ui2hka*b* 

+ 2Ui3hla*c* + 2U23klb*c*)]. 

^Estimated standard deviations are given in parentheses 
for the least significant digit. 
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Table B.4. Selected Distances and Angles for (GgHgNHlSbl^ 

Distances 
Sb-Il 
Sb-I2 
Sb-I3 
I2-N1 

(A) 
3.021(4)* 
3.037(3) 
2.809(4) 
3.807(31) 

S b - I l g  
Sb-I2b 
S b - I 4  

3.257(3) 
3.340(3) 
2.828(4) 

Angles (deg) 

I l - S b - I l a  
1 1 - S b - I 3  
1 2 - S b - I l a  
1 2 - S b - I 3  
1 3 - S b - I l a  
14-Sb-I2b 
Nl-Hl-12 

91.80(9) 
87.94(10) 
86.52(9) 
94.60(10) 
89.60(10) 
90.06(10) 
153.07 

Il-Sb-I2b 
1 1 - S b - I 4  
12-Sb-I2h 
1 2 - S b - I 4  
1 3 — S b — I 4  
I l a - S b - I 2 b  

85.31(9) 
92.96(10) 
92.05(8) 
88.56(10) 
93.99(10) 
86.92(8) 

Subscripts refer to equivalent positions relative to the 
reference molecule. 

(a) 
( b )  

X, 1/2 - y, z - 1/2 
X, 1/2 - y, 1/2 - z 

*Estimated standard deviations are given in parentheses 
for the least significant digits. 
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Table B.5. Positional® (xlO^ ) and I sotropic Thermal (A2, 
xlO^) Parameters for the Hydrogen Atoms in 

(CgHgNHlSblj 

atom X y z ub 

HI 993 5015 -7562 63. 3 
H2 1843 5411 -8618 63. 3 
H3 2060 7175 -8614 63. 3 
H4 1429 8391 -7676 63. 3 
H5 577 7907 -6630 63. 3 
H6 560 6180 -6526 63. 3 

^Hydrogen atoms were not refined. 

= exp[-8ii2u{ sin0/X) 2 ] . 
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C4 

Figure B.l. View showing the immediate environment around 

the antimony atom in the structure of 

(NHC5H5)Sbl4. The bridging iodines are II and 

12 
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Figure B.2. Unit cell view of (NHCgHgjSbl^ showing the 

infinite chain in the z-direction. In the 

figure, c is horizontal, a is vertical and b is 

perpendicular to the plane of the paper 
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3.037(3) Â, respectively, while the longer bridging 

distances are 3.257(3) and 3.340(3) Â. All are much shorter 

than the sum of the van der Waals radii, 4.35 Â. 

Examination of the differences in bond length between the 

long and short bridge bonds in the three antimony-halogen 

compounds that form infinite chains shows the following: 

chloro, à = 0.496; bromo, û = 0.408; and iodo, A = 0.269 Â. 

Thus, there appears to be a clear trend toward less 

asymmetry in the bridge as the size of the halogen 

increases. 

Because antimony halides often form as mixed-valence 

compounds, and it is difficult to distinguish pyridine from 

pyridinium by X-ray diffraction, one might speculate as to 

whether the antimony exists solely in the trivalent state or 

in a mixture of the tri- and pentavalent states. Using the 

approximation to the cation valence state given by 

Zachariasen54, and taking the Sb-I bond distance of 2.67Â in 

Sbig as the distance corresponding to a unit bond strength 

distance, the charge on the antimony is calculated to be 

2.94, implying that the antimony is in the trivalent state. 

Also, in charge-transfer complexes, where the metal ion 

exists in a mixture of tri- and pentavalent states, the 

crystals appear, jet black under reflected light. However, 

the crystal under examination appears orange under reflected 

light, which further suggests that the antimony is not in a 

mixed-valent state. Finally, the fact that the reaction 
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mixture was an acidic medium suggests that the ring is the 

pyridinium ion as opposed to the neutral pyridine molecule. 

Thus, we can conclude that the antimony is in a trivalent 

state. 

The Sb-I2 bridging distances are slightly longer than 

the Sb-Il bridging distances, which is most likely a result 

of interactions between the pyridinium ion and 12. The 

nitrogen-hydrogen bond in the pyridinium ion points towards 

12, and the 12-Nl distance of 3.807(31)A is shorter than 

the nitrogen-iodine van der Waals distance of 3.85Â, 

suggesting that there is hydrogen bonding occurring between 

the 12 and the pyridinium ring. 

It is interesting to note that Zachariasen's method 

predicts Sb-I bond strengths that agree quite well with the 

bond strengths that would be expected. Intuitively, the Sb-

I bond strengths in the Sbl^" anion would be expected to be 

3/4 of that found in Sblg. The calculated bond strengths 

range from 0.70 to 0.77 (Sb-Il; 0.48 + 0.29 = 0.77, Sb-I2: 

0.46 + 0.24 = 0.70, Sb-I3: 0.75, Sb-I4 = 0.72). Because of 

the hydrogen bonding between 12 and the pyridinium ring, the 

Sb-I2 bond would be expected to be the weakest, and the 

calculation indicates that this is indeed the case. 

Examination of the isotropic temperature factors of the 

pyridinium ion atoms shows that they are quite large. This 

is consistent with the observed fall off in intensity of 
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data having sin0/X > 0.5, since thermal vibration effects 

are more pronounced at large sine/X values. 

Structure Determination of PO4C24H25 

Experimental 

Crystal Data PO4C24H25, M = 408.43, monoclinic, a = 

16.189(5), b = 14.186(2), c = 19.135(8) Â, g = 114.97(3)°, V 

= 4138.7 , space group P2i/a from systematic absences 

h01:h=2n and OkO:k=2n, Dj, = 1.311 g cm~^, 2 = 8, /t/(Mo) = 

1.543 cm"!. 

Crystallographic studies Crystals of this compound were 

prepared in Dr. Verkade's group (Department of Chemistry, 

Iowa State University). For data collection, a crystal of 

approximate dimensions 0.1 x 0.1 x 0.1 mm was mounted in a 

0.2 mm diameter thin-walled capillary tube, sealed with wax, 

and attached to a standard goniometer head. The crystal was 

aligned on a four-circle DATEX X-ray diffractometer. Four 

preliminary w-oscillation photographs were taken at various 

<J) settings. The approximate positions of 15 reflections 

were selected from the photographs and used as input to an 

automatic indexing program^l. The resulting reduced cell 

and reduced cell scalars indicated a primitive monoclinic 

lattice. The predicted layer spacings for this cell were 

observed, within experimental error, on three axial w-

oscillation photographs. 
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Intensity data were collected at room temperature (20°C) 

using Mo (X = 0.70169 Â) radiation on the above mentioned 

diffractometer equipped with a graphite monochromating 

crystal and interfaced to a VAX 370 computer in a real-time 

mode. A total of 4768 intensities were measured, 

corresponding to reflections in octants hkl and Hkl, using 

an w-step scan technique with a scan half-width of 0.5 

degree. The data were collected to a maximum sin0/X of 0.6. 

As a check on the stability of the crystal, the intensities 

of seven standard reflections were measured every 50 

reflections during data collection. No significant decay 

was observed. 

Accurate unit cell parameters were obtained by carefully 

centering ten independent high-angle reflections on the 

diffractometer noted above and inputing the +20 values of 

these reflections into a least-squares fitting program. 

Intensity data were corrected for Lorentz-polarization 

effects, but not for absorption due to the low value of jj. 

Of the 4768 reflections measured, the 2808 that had I > 

3a(I) were considered to be observed. The symmetry 

equivalent reflections were averaged (Rgv ~ 0.028), yielding 

2649 reflections which were used in the refinement of the 

structure. 
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Solution and Refinement 

The positions of the non-hydrogen atoms were determined 

as follows: Patterson'superpositions were carried out using 

(i) the a-glide phosphorus-phosphorus Marker vector, 

followed by (ii) the 2^ phosphorus-phosphorus Barker vector. 

The resulting superposition map showed a quartet of large 

peaks, which were taken to be phosphorus atoms. Further 

analysis showed a second quartet of peaks, also quite large 

in the original Patterson, which had the same relationships 

amongst themselves as did the initial quartet of peaks. 

This implied the presence of two parallelograms of 

phosphorus atoms, having the vectors that were chosen for 

the superpositions in common. From these two quartets, the 

positions of two non-symmetry-related phosphorus atoms were 

determined. The positions of the remaining non-hydrogen 

atoms were determined from successive structure factor^Z and 

electron density map calculations^^. 

The initial positional and isotropic thermal parameters 

were refined using a block-matrix least-squares procedure. 

The positional and anisotropic thermal parameters were 

refined to their final values using a full-matrix least-

squares procedure, minimizing the function Ew(|Fq|-|F^|)^ to 

a conventional residual index of R = E(|(|F Q|-|F^|)|)/E|F Q| 

= 0.047 and a weighted residual index of R„ = [EW(|FQ|-

IFgI)2/EWIFqI 2]1/2 = 0. 047 , where w = l/a2(|Fo|). The 

positions of approximately two-thirds of the hydrogens were 
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Figure B.3. ORTEP drawing for PO4C24H25 
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Table B.6. Positional® (xlO*) and Averaged Isotropic 

Thermal (A^, xlO^) Parameters for PO4C24H25 

atom X y z Uav^ 

Pi 9142(1)C 2327(1) 9657(1) 42 
01 9508(3) 2711(3) 9140(2) 52 
02 8674(3) 1336(3) 9378(2) 45 
03 8399(3) 2953(3) 9719(2) 48 
04 6707(3) 2536(4) 7402(2) 67 
CI 9942(4) 2157(5) 10684(3) 40 
C2 7857(4) 1370(4) 8669(4) 48 
C3 7588(4) 3015(4) 8996(4) 49 
C4 7183(4) 2041(5) 8740(4) 46 
C5 6415(4) 2159(5) 7931(4) 55 
C6 6806(5) 1644(5) 9287(4) 71 
Cll 9626(4) 1396(4) 11076(3) 41 
C12 10140(5) 596(5) 11420(4) 53 
CI 3 9845(6) -75(5) 11785(4) 66 
C14 9048(5) 29(5) 11837(4) 63 
CIS 8526(5) 813(6) 11494(4) 62 
C16 8805(4) 1487(5) 11110(4) 50 
C21 10830(4) 1839(5) 10683(4) 43 
C22 10849(5) 1175(5) 10159(4) 51 
C23 11656(5) 806(5) 10214(4) 55 
C24 12443(5) 1149(5) 10797(5) 62 
C25 12411(5) 1817(6) 11318(4) 57 
C26 11622(5) 2162(5) 11268(4) 54 
C31 10041(4) 3149(5) 11054(4) 45 
C32 9868(4) 3293(6) 11706(4) 54 
C33 • 9947(5) 4201(7) 12023(5) 65 
C34 10173(6) 4948(6) 11690(5) 67 
C35 10398(6) 4811(6) 11070(5) 69 
C36 10311(5) 3907(5) 10756(4) 60 
Pa 9621(1) 2326(2) 5366(1) 46 
Ola 10497(3) 2680(4) 5885(3) 49 
02a 9384(3) 1346(3) 5637(3) 51 

^Positional parameters are given as fractions of the 
unit cell. 

bUav - (Uji + U22 + U33)/3. T = exp[-2ii2(Uiih2a*2 + 

U22k2b*2 + U33l2c*2 + 2Ui2hka*b* + 2Ui3hla*c* + 

2U23klb*c*)]. 

^Estimated standard deviations are given in parentheses 
for the least significant digit. 
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Table B.6. (Continued) 

atom X y z ^av 

03a 8854(3) 3002(3) 5322(3) 49 
04a 9358(3) 2542( 4 ) 7635(3) 72 
Cla 9430(5) 2156(5) 4342(4) 39 
C2a 9260(5) 1395(5) 6358(4) 51 
C3a 8724(5) 3061(5) 6042(4) 52 
C4a 8550(5) 2088(6) 6296(5) 50 
C5a 8528(5) 2198(7) 7093(4) 72 
C6a 7641(5) 1718(6) 5743(5) 72 
Clla 9241(6) 3155(6) 4004(5) 50 
Cl2a 8453(6) 3417(6) 3381(5) 62 
Cl3a 8299(7) 4357(8) 3120(5) 87 
Cl4a 8940(10) 5037(8) 3472(7) 106 
C15a 9742(8) 4779(8) 4054(6) 93 
Cl6a 9890(7) 3851(7) 4315(5) 72 
C21a 10269(5) 1783(5) 4300(5) 42 
C22a 10455(6) 2005(6) 3672(4) 59 . 
C23a 11175(6) 1624(7) 3600(5) 67 
C24a 11730(6) 1005(7) 4150(6) 69 
C25a 11541(5) 762(6) 4765(5) 58 
C26a 10820(5) 1126(6) 4844(4) 51 
C31a 8658C5) 1461(5) 3931(4) 42 
C32a 8776(5) 630(6) 3601(5) 53 
C33a 8083(7) 11(6) 3240(5) 62 
C34a 7260(6) 203(7) 3204(5) 60 
C35a 7142(6) 1023(6) 3553(5) 58 
C36a 7842(6) 1665(6) 3921(4) 48 
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Table B.7. Anisotropic Thermal Parameters® (Â^, xlO^) for 

the Non-Hydrogen Atoms in PO4C24H25 

atom Uii "22 "33 "12 "13 "23 

PI 43(l)b 45(1) 37(1) -3(1) 14.6(9) -3(1) 
01 56(3) 59(3) 41(3) -10(3) 24(2) 1(2) 
02 47(3) 42(3) 44(3) -4(2) 13(3) -2(2) 
03 44(3) 53(3) 47(3) 1(2) 15(3) -7(2) 
04 59(3) 101(4) 41(3) -10(3) 12.(3) 6(3) 
CI 36(4) 50(5) 33(4) 7(4) 11(3) 2(4) 
C2 48(5) 55(5) 40(4) 0(4) 9(4) -12(4) 
C3 49(4) 44(5) 54(5) 13(4) 7(4) -4(4) 
C4 46(4) 51(5) 42(4) 1(4) 18(4) -2(4) 
C5 39(4) 83(6) 44(4) -6(4) 13(4) -4(5) 
C6 64(6) 08(6) 62(5) -22(5) 37(5) -9(5) 
Cll 55(5) 36(5) 34(4) -5(4) 10(4) -1(3) 
C12 61(6) 43(4) 56(5) 2(4) 26(5) 9(4) 
C13 07(7) 50(6) 60(6) -3(5) 39(5) 2(4) 
C14 86(6) 51(5) 52(5) -13(5) 32(5) 0(4) 
CIS 69(6) 69(6) 49(5) -13(5) 31(5) -3(5) 
C16 57(5) 55(5) 39(5) 1(4) 24(4) -2(4) 
C21 45(5) 44(5) 39(5) -10(4) 14(4) 3(4) 
C22 57(5) 50(5) 46(5) 2(4) 22(4) 1(4) 
C23 56(5) 55(5) 55(5) 2(4) 27(4) 2(4) 
C24 59(7) 63(6) 65(6) 11(5) 30(5) 25(4) 
C25 40(5) 65(6) 59(5) -7(4) 17(4) 9(5) 
C26 44(4) 64(5) 54(5) -6(4) 21(4) -2(4) 
C31 47(5) 47(5) 42(5) -1(4) 0(4) -5(4) 
C32 47(5) 63(6) 52(5) -4(4) 7(4) -21(4) 
C33 55(6) 79(7) 61(6) 15(5) -1(4) -21(6) 
C34 04(7) 52(7) 67(7) 17(5) -21(5) -14(5) 
C35 106(7) 40(6) 61(6) -11(5) -7(5) 7(5) 
C36 77(6) 53(5) 51(5) -15(4) 10(4) 0(5) 
Pa 53(1) 44(1) 40(1) 0(1) 21(1) 0(1) 
Ola 46(3) 65(4) 37(3) -14(3) 9(3) -0(3) 
02a 60(4) 42(3) 49(4) -1(3) 32(3) 3(3) 
03a 59(4) 48(4) 40(3) 8(3) 25(3) 7(3) 

®T = exp[-2n2(Uiih2a*2 + U22k^b*2 .+ 0331^0*2 + 

2Ui2hka*b* + 2Ui3hla*c* + 2U23klb*c*)]. 

^Estimated standard deviations are given in parentheses 
for the least significant digits. 
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Table B.7. (Continued) 

atom "11 "22 "33 "12 "13 "23 

04a 70(4) 100(4) 47(4) -13(4) 28(3) -10(4) 
Cla 51(5) 32(5) 35(4) 8(4) 16(4) 6(4) 
C2a 63(6) 44(6) 45(5) -1(5) 36(5) 2(4) 
C3a 64(6) 43(5) 48(5) 1(5) 29(5) -3(4) 
C4a 40(5) 51(6) 60(6) -13(5) 20(5) -5(5) 
C5a 70(6) 97(8) 48(5) -12(6) 32(5) -5(6) 
C6a 68(6) 86(7) 62(6) 2(5) 31(5) -8(5) 

Clla 76(7) 31(5) 43(6) 1(5) 25(5) -7(5) 
Cl2a 87(7) 45(7) 55(6) 18(6) 35(6) 17(5) 
C13a 118(9) 80(7) 62(7) 38(7) 49(7) 19(6) 
Cl4a 198(14) 44(8) 76(9) 17(9) 78(9) 8(7) 
Cl5a 164(12) 53(8) 64(7) -27(7) 61(8) -13(6) 
Cl6a 114(9) 53(7) 50(6) -17(7) 46(6) -12(6) 
C21a 44(5) 32(5) 51(6) -10(4) 20(5) -16(4) 
C22a 68(7) 60(6) 49(6) -6(5) 35(5) -3(5) 
C23a 62(7) 69(7) 69(7) -7(6) 41(6) -1(6) 
C24a 59(7) 58(7) 89(7) -9(6) 42(6) -21(6) 
C25a 45(6) 57(6) 72(7) -8(5) 24(5) -18(5) 
C26a 59(6) 47(6) 48(6) -12(5) 25(5) -8(5) 
C31a 44(6) 41(6) 41(5) -11(5) 12(4) -1(5) 
C32a 59(6) 44(5) 57(6) -16(5) 22(5) -12(5) 
C33a 75(7) 57(7) 54(6) -9(6) 26(6) -13(5) 
C34a 54(6) 64(7) 61(6) -18(6) 14(5) -10(5) 
C35a 49(7) 66(6) 59(6) 9(5) 18(5) 2(5) 
C36a 42(6) 48(6) 52(5) -8(5) 11(5) -6(5) 
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Table B.8. Positional® (xlO^) and Thermal (A^, xlO^) 

Parameters for Hydrogen Atoms in PO4C24H25 

atom X y z ub 

HI 7887 1402 8142 76.0 
H2 7553 793 8500 76.0 
H3 7740 3286 8566 76.0 
H4 7303 3572 9083 76.0 
H5 5883 2493 8024 76.0 
H6 6013 1578 7773 76.0 
H71 6340 2041 9293 76.0 
H81 7282 1601 9815 76.0 
H91 6580 1000 9122 76.0 
H72 7129 1054 9528 76.0 
H82 6887 2095 9698 76.0 
H92 6186 1492 9004 76.0 
HIO 6263 2459 6847 76.0 
H12 10802 522 11388 76.0 
H13 10260 -683 12055 76.0 
HI 4 8822 -507 12127 76.0 
HI 5 7899 882 11526 76.0 
H16 8392 2113 10837 76.0 
H22 10216 924 9703 76.0 
H23 11665 267 9795 76.0 
H24 13086 854 10831 76.0 
H25 13027 2062 11769 76.0 
H26 11600 2694 11679 76.0 
H32 9649 2697 11963 76.0 
H33 9779 4328 12535 76.0 
H34 10238 5680 11931 76.0 
H35 10626 5425 10806 76.0 
H36 10495 3807 10254 76.0 
Hla 9250 633 6528 76.0 
H2a 9831 1579 6807 76.0 
H3a 8181 3580 5902 76.0 
H4a 9262 3354 6465 76.0 
H5a 8375 1563 7251 76.0 
H6a 8033 2645 7039 76.0 
H7al 7160 2139 5722 76.0 
H8al 7523 1081 5893 76.0 
H9al 7583 1663 5200 76.0 
H7a2 7684 1117 5487 76.0 
H8a2 7261 1591 6010 76.0 

^Hydrogen positions were calculated but not refined. 

^T = exp[-8n2u(sin0/X)2]. 
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Table B.8. (Continued) 

atom X y z 

H9a2 7321 2175 5318 76.0 
HlOa 9391 2333 8145 76.0 
Hl2a 7924 2863 3091 76.0 
Hl3a 7665 4561 2626 76.0 
Hl4a 8827 5793 3266 76.0 
Hl5a 10261 5323 4338 76.0 
Hl6a 10543 3658 4808 76.0 
H22a 10011 2516 3228 76.0 
H23a 11323 1839 3098 76.0 
H24a 12321 709 4072 76.0 
H25a 11985 242 5199 76.0 
H26a 10662 910 5346 76.0 
H32a 9439 471 3598 76.0 
H33a 8191 -656 2968 76.0 
H34a 6692 -282 2932 76.0 
H35a 6472 1202 3554 76.0 
H36a 7731 2328 4202 76.0 
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determined from a difference electron density map and the 

rest of the hydrogen positions were calculated. None of the 

hydrogen positions were refined. The final positional and 

averaged isotropic thermal parameters for the non-hydrogen 

atoms are given in Table B.6, and the anisotropic thermal 

parameters for these atoms are given in Table B.7. Table 

B.8 contains the calculated positions and isotropic thermal 

parameters for the hydrogen atoms. 

Structure Determination of PO^CgHii 

Experimental 

Crystal Data PO2C6H12, M = 146.13, orthorhombic, a = 

10.2107(12), b = 10.5541(23), c = 6.4639(6) Â, V = 697.54 

Â^, space group P2i2i2i from systematic absences h00:h=2n, 

0k0:k = 2n and 001:l = 2n, Dg = 1.391 g cm~^, Z = 4, /u(Mo) = 

3.077 cm-1. 

Crystallographic studies Crystals of this compound were 

prepared in Dr. Verkade's group (Department of Chemistry, 

Iowa State University). For data collection, a cylindrical 

crystal of approximate dimensions 0.35 mm in length and 0.15 

mm in diameter was mounted in a 0.2 mm diameter thin-walled 

capillary tube, sealed with wax, and attached to a standard 

goniometer head. The crystal was aligned on a four-circle 

SYNTEX X-ray diffractometer. A preliminary rotation 

photograph was taken. The approximate positions of 12 
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reflections were selected from the photograph, refined and 

used as input to an automatic indexing program^^. The 

resulting reduced cell and reduced cell scalars indicated a 

primitive orthorhombic lattice. The predicted layer 

spacings for this cell were observed, within experimental 

error, on three axial w-oscillation photographs. 

Intensity data were collected at room temperature (20°C) 

using Mo K* (A = 0.70169 Â) radiation on the above mentioned 

difftactometer equipped with a graphite monochromating 

crystal and interfaced to a NOVA computer in a real-time 

mode. A total of 1867 intensities were measured, 

corresponding to reflections in octants hkl and hkl, using 

an w-step scan technique with a scan half-width of 0 . 5  

degree. The data were collected to an maximum sin0/X of 

0.6. As a check on the stability of the crystal, the 

intensity of one standard reflection was measured every 7 5  

reflections during data collection. No significant decay 

was observed. 

Accurate unit cell parameters were obtained by carefully 

centering fifteen independent high-angle reflections on the 

diffractometer noted above and inputing the +20 values of 

these reflections into a least-squares fitting program. 

Intensity data were corrected for Lorentz-polarization 

effects, but not for absorption due to the low value of //. 

Of the 1867 reflections measured, the 918 that had I > 3a(I) 
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Figure B.4. ORTEP drawing for PO^CgHii 
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Table B.9. Positional® (xlO^) and Averaged Isotropic 

Thermal (Â^, xlO^) Parameters for PO^CgHii 

atom X y z "av^ 

PI 5755(3)C 3377(3) 7840(4) 42 
01 6687(10) 3054(11) 9516(16) 88 
02 5555(9) 2227(6) 6243(14) 57 
CI 6176(12) 4655(12) 6206(24) 67 
C2 4116(15) 3795(11) 8546(16) 52 
C3 4607(19) 2491(12) 4545(22) 92 
C4 5091(16) 4745(12) 4469(20) 81 
C5 3338(12) 3948(16) 6569(20) 79 
C6 4088(16) 3752(11) 4669(17) 55 

^Positional parameters are given as fractions of the 
unit cell. 

bUav - ("11 + U22 + U33)/3. T - exp[-2n2(Uiih2a*2 + 

U22k2b*2 + U33l2c*2 + 2Ui2hka*b* + 2Ui3hla*c* + 

2U23klb*c*)]. 

^Estimated standard deviations are given in parentheses 
for the least significant digit. 
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Table B.IO. Anisotropic Thermal Parameters® (Â^, xlO^) for 

the Non-Hydrogen Atoms in PC^CgHii 

atom "11 "22 "33 "12 "13 "23 

PI 35(1)b 57(2) 35(1) -2(2) -8(2) 3(1) 
01 70(7) 130(8) 65(6) 16(6) -35(6) 12(6) 
02 68(6) 48(4) 56(5) 14(4) -3(5) 0(4) 
Cl 49(8) 65(8) 86(10) -19(6) 17(8) -2(8) 
C2 48(7) 90(9) 16(5) 1(7) -1(6) -3(5) 
C3 164(23) 68(8) 46(9) 0(10) -35(11) -21(7) 
C4 130(14) 83(9) 30(7) 23(10) -15(9) 13(7) 
C5 33(5) 164(14) 39(7) 32(8) -13(6) -9(9) 
C6 76(10) 64(9) 26(6) 24(8) -3(7) 2(5) 

®T = exp[-2ii^ ( + Uggl^c*^ + 

2Ui2hka*b* 

+ 2Ui3hla*c* + 2U23klb*c*)]. 

^Estimated standard deviations are given in parentheses 
for the least significant digits. 
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Table B.ll. Positional® (xl04) and Thermal (A2, xl03) 

Parameters for Hydrogen Atoms in PC^CgHii 

atom X y z ub 

HI 7127 4486 5469 38.0 
H2 6201 5537 7018 38.0 
H3 4101 4671 9411 38.0 
H4 3679 3046 9492 38.0 
H5 3882 1783 4538 38.0 
H6 5202 2386 3067 38.0 
H7 5609 4632 2974 38.0 
H8 4669 5660 4542 38.0 
H9 2914 4891 6542 38.0 
HIO 2533 3255 6581 38.0 
Hll 3236 3943 3392 38.0 

^Hydrogen positions were calculated but not refined. 

t>T = exp[-8n2u( sin0/X)2 ]. 
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were considered to be observed. The symmetry equivalent 

reflections were averaged (Rgy = 0.099), yielding 542 

reflections which were used in the refinement of the 

structure. 

Solution and'Refinement 

The position of the phosphorus atom was determined by 

examination of a Patterson map. The positions of the 

remaining non-hydrogen atoms were determined from successive 

structure factor^] and electron density map calculations^^. 

The initial positional and isotropic thermal parameters were 

refined using a block-matrix least-squares procedure. The 

positional and anisotropic thermal parameters were refined 

to their final values using a full-matrix least-squares 

procedure, minimizing the function Sw(|F q|-||)^ to a 

conventional residual index of R = S(|(|F Q|-||)|)/2|F Q| = 

0 . 0 8 8  a n d  a  w e i g h t e d  r e s i d u a l  i n d e x  o f  R ^  =  ( Z W ( | F Q | -

IF^I)^/2WIFQI 2]1/2 = 0.095, where w = l/g2(|FO|). The 

positions of the hydrogen atoms were calculated and not 

refined. The final positional and averaged isotropic 

thermal parameters for the non-hydrogen atoms are given in 

Table B.9, and the anisotropic thermal parameters for these 

atoms are given in Table B.IO. Table B.ll contains the 

calculated positions and isotropic thermal parameters for 

the hydrogen atoms. 
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Structure Determination of (NHC5H5)2lio 

Experimental 

Crystal Data (NHC5H5)2I10f M = 1429.26, orthorhombic, a 

= 17.3305(37), b = 17.6146(26), c = 4.5336(7) Â, V = 

1383.996 A^, space group Pm2ib, systematic absences hk0:k=2n 

and 0k0;k=2n, Dg = 3.429 g cm"^, 2 = 2, /u(Mo) = 110.8 cm~^. 

Crystallographic studies For data collection, a crystal 

of approximate dimensions 0.35 x 0.15 x 0.15 mm was mounted 

in a 0.2 mm diameter thin-walled capillary tube, sealed with 

wax, and attached to a standard goniometer head. The 

crystal was aligned on a four-circle SYNTEX X-ray 

diffractometer. A preliminary rotation photograph was 

taken. The approximate positions of 13 reflections were 

selected from the photograph, refined and used as input to 

an automatic indexing program^Z. The resulting reduced cell 

and reduced cell scalars indicated a primitive orthorhombic 

lattice. The predicted layer spacings for this cell were 

observed, within experimental error, on three axial co-

oscillation photographs. 

Intensity data were collected at room temperature (20°C) 

using Mo (X = 0.70169 A) radiation on the above mentioned 

diffractometer equipped with a graphite monochromating 

crystal and interfaced to a NOVA computer in a real-time 

mode. A total of 1827 intensities were measured, 

corresponding to reflections in the hkl octant, using an w-
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step scan technique with a scan half-width of 0.5 degree. 

The data were collected to an maximum sin0/X of 0.6. As a 

check on the stability of the crystal, the intensity of one 

standard reflection was measured every 75 reflections during 

data collection. No significant decay was observed. 

Accurate unit cell parameters were obtained by carefully 

centering fifteen independent high-angle reflections on the 

difftactometer noted above and inputing the +29 values of 

these reflections into a least-squares fitting program. 

Intensity data were corrected for absorption (Tmin/^max ~ 

0.180/0.219), as well as for Lorentz-polarization effects. 

Of the 1827 reflections measured, the 555 that had I > 3a(I) 

were considered to be observed. 

Solution and Refinement 

The correct space group and the locations of two iodines 

were determined as described in Chapter 5. The positions of 

the remaining non-hydrogen atoms were determined from 

successive structure factor^S and electron density map 

calculations^^. The initial positional and isotropic 

thermal parameters were refined using a block-matrix least-

squares procedure. The positional and anisotropic thermal 

parameters were refined to their final values using a full-

matrix least-squares procedure, minimizing the function 

IFQI - IFpI)2 to a conventional residual index of R = 

Z(I(|Fol"|Fcl)!)/%!Fol = 0.048 and a weighted residual•index 
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Table B.12. Positional® (xlO^) and Averaged Isotropic 

Thermal xlO^) Parameters for the Anion in 

(NHCgHgllio 

atom X y z Uav^ 

11 5000 5000 -635(18)C 77 
12 5000 1786(8) 4244(11) 43 
13 3385(2) 1834(5) 7402(8) 54 
14 1887(2) 1854(5) 9636(8) 65 
IS 5000 3525(5) 1407(15) 60 
16 0 -83(6) 906(12) 48 
17 0 3313(5) 6146(15) 54 
18 0 1685(5) 3371(13) 45 

^Positional parameters are given as fractions of the 
unit cell, 

bUav - (Uii + U22 + U33)/3. T - exp[-2n2(Uiih2a*2 + 

U22k2b*2 + U33l2c*2 + 2Ui2hka*b* + 2Ui3hla*c* + 

2U23klb*c*)]. 

^Estimated standard deviations are given in parentheses 
for the least significant digit. 
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Table B.13. Anisotropic Thermal Parameters® (Â^, xlO^) for 

the Anion in (NHC5H5)2lio 

atom Un "22 U33 "12 "13 "23 

II 69(5) 60(5) 102(6) 0 0 -23(6) 
12 37(2) 51(3) 41(3) 0 G 0(5) 
13 47(2) •59(2) 57(2) 4(3) -16(2) 2(3) 
14 44(2) 81(3) 70(3) 6(3)- -14(2) -4(4) 
15 46(4) 72(5) 61(5) 0 0 -24(4) 
16 50(3) 41(3) 52(4) 0 0 -2(4) 
17 46(3) 60(4) 56(5) 0 0 13(4) 
18 35(2) 49(5) 52(4) 0 0 -2(4) 

®T = exp[-2%2(Uiih2a*2 + U22k2b*2 + UgglZc*^ + 

2Ui2hka*b* 

+ 2Ui3hla*c* + 2U23klb*c*)]. 

^Estimated standard deviations are given in parentheses 
for the least significant digits. 
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Table B.14. Positional® (xlO*) and Isotropic Thermal 

xlo3) Parameters for the Cation in (NHCgHglliQ 

atom X y z ub 

N 1922(29)C 3915(31) 3014(121) 83(17) 
CI 2751(33) 4883(44) 6197(120) 60(16) 
C2 3028(31) 4232(43) 5210(209) 90(20) 
C3 2623(37) 3627(36) 3437(135) 71(22) 
C4 2082(43) 5109(44) 5145(198) 111(26) 
C5 1645(27) 4601(30) 3635(123) 55(17) 

^Positional parameters are given as fractions of a unit 
cell. 

^T " expt-Sn^lKsine/X)2]. 

^Estimated standard deviations are given in parentheses 
for the least significant digits. 

Table B.15. Positional® (xlO*) and Thermal xlO^) 

Parameters for Hydrogen Atoms in (NHCgHglliQ 

atom X y z 

Hi 1589 3500 1724 50.7 
H2 1063 4788 2991 50.7 
H3 1864 5670 5806 50.7 
H4 3085 5298 7487 50.7 
H5 3610 4045 5854 50.7 
H6 2841 3066 2776 50.7 

^Hydrogen positions were calculated but not refined. 
Positional parameters are given as fractions of a unit cell. 

^T - exp[-8n2u(sine/X)2]. 
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of R„ = [Ew(IFoI - IFgI)^/ZwIFoI^= 0.048, where w = 

1/CT2(|FO|). The positions of the hydrogen atoms were 

calculated and not refined. The final positional and 

averaged isotropic thermal parameters for the anion are 

given in Table B.12, and the anisotropic thermal parameters 

for these atoms are given in Table B.13. The positional and 

isotropic thermal parameters for the cation are given in 

Table B.14. Table B.15 contains the calculated positions 

and isotropic thermal parameters for the hydrogen atoms. 

Twinning Effects in YBa2Cu207_x 

Crystallographic Studies 

Crystals of the superconducting material were prepared 

by Dr. Gschneidner's group (Ames Laboratory, Iowa State 

University). Three apparently single-orientation crystals 

were mounted on glass fibers using Duco cement and attached 

to standard goniometer heads. The crystals were aligned on 

a four-circle DATEX dif f ractometer. Four preliminary co-

oscillation photographs were taken at various if settings. 

The approximate positions of 10 reflections were selected 

from the photographs and used as input to an automatic 

indexing program^^. The resulting reduced cell and reduced 

cell scalars indicated a primitive orthorhombic lattice. 

Additional reflections having 20 > 25° were used to 

determine a more accurate orientation matrix. 
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A computer program was written to scan a region of 

reciprocal space using a "step and count" technique. In 

this technique, the detector is moved through reciprocal 

space using a small stepsize, and the intensity is measured 

after each step for several seconds. For each crystal, 

regions of reciprocal space around the (220), the (220), the 

(400) and the (040) reflections were scanned using a 

stepsize of 0.01 reciprocal lattice units and a counting 

time of two seconds. These regions were scanned a minimum 

of four times and the results of the scans were averaged for 

each crystal. The plots of the averaged scans for a given 

reflection were similar for each crystal. Representative 

plots for the (220), (220), (400), and (040) reflections are 

given in Figures B.5, B.6, B.7, and B.8, respectively. It 

is quite obvious from the appearance of these plots that the 

crystalline samples of the material were not single-

orientation and that a twinning process was occurring. 

Twin Modelling 

A computer program was written to generate the expected 

shape of a reflection for a given mode of twinning. The 

effect of instrument broadening was treated by expressing 

the peak shape as Gaussian, 

Ijj = Ij^ exp(-a(h - h^)2) , (B.l) 
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Figure B.5. Reciprocal space plot of the observed (220) 

reflection for YBa2Cu307_x 
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Figure b . 6 .  Reciprocal space plot of the observed ( 2 2 0 )  

reflection for YBa2Cu307_x 
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Figure B.7. Reciprocal space plot of the observed (400) 

reflection for YBa2Cu307_x 
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Figure B.8. Reciprocal space plot of the observed (040) 

reflection for YBa2Cu307_x 
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where a is an adjustable parameter which determines the 

width of the peak. Three modes of twinning were modelled; 

(1) a mirror plane along hhO, (2) mirror planes along hhO 

and hfiO, and (3) a main crystal with a mirror along hRO with 

a smaller satellite, also having a mirror along hhO, rotated 

90° relative to the orientation of the main crystal. Plots 

of the (400), the (220), and the (220) reflections for each 

of the twinning modes are shown in Figures B.9 through B.17. 

Discussion 

At high temperatures, this compound exists in a 

tetragonal form, having mirrors along hhO and hhO and a 

four-fold rotation axis. As it cools, it undergos a 

transformation to an orthorhombic phase. The accepted space 

group for this phase is Pmmm. This space group contains 

mirror planes along each axis, so that a twinning mode 

containing a mirror hhO must, by symmetry, have a mirror 

along hhO. In such a twinning mode, the (220) and the (220) 

reflections should have the same shape. However, 

examination of the observed reflections clearly indicates 

that this is not the case. The (400) reflection should have 

three major components, as shown in Figure B.IO, but again, 

this is not the case. 

The twinning model that gives the best agreement to the 

observed peak shapes has a main crystal with a mirror along 
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Figure B.9. Reciprocal space plot of the calculated (400) 

reflection for YBa2Cu307_jj using twinning mode 

( 1 )  
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Figure B.IO. Reciprocal space plot of the calculated (400) 

reflection for YBa2Cu307_x using twinning mode 

( 2 )  
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Figure B.ll. Reciprocal space plot of the calculated (400) 

reflection for YBagCugO?.* using twinning mode 

(3) 
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• 

1.95 2.11 

Figure B.12. Reciprocal space plot of the calculated (220) 

reflection for YBa2Cu307_x using twinning mode 

( 1 )  
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2.05 1 " ' I I I I I' • • I' " 1 !• I "• ' I 1 " ' ' I "• I ' I 
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* 1.95 2.11 

Figure B.13. Reciprocal space plot of the calculated (220) 

reflection for YBa2Cu307_x using twinning mode 

( 2 )  
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Figure 8.14. Reciprocal space plot of the calculated (220) 

reflection for YBa2Cu307_x using twinning mode 

(3) 



www.manaraa.com

179 

2.05 

h 
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Figure B.15. Reciprocal space plot of the calculated (220) 

reflection for YBa2Cu307_x using twinning mode 

( 1 )  
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1.89 
-2.11 

Figure B.16. Reciprocal space plot of the calculated (220) 

reflection for YBa2Cu307_x using twinning mode 

( 2 )  
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Figure B.17. Reciprocal space plot of the calculated (220) 

reflection for YBa2CU307_x using twinning mode 

(3) 
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hRO and a satellite rotated by 90°. It is not unexpected 

that a rotated satellite is found, as this could easily be 

the result of the loss of the four-fold rotation axis. It 

is surprising that the model only contains one mirror. This 

may indicate that the correct space group is of lower 

orthorhombic symmetry, or that there is some type of long-

range "memory" effect occurring so that once twinning begins 

to occur in one direction, that direction becomes the 

preferred twinning direction. 
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